Crack Resistance Function Analysis of Flexible Short Fiber in Asphalt

2011 ◽  
Vol 243-249 ◽  
pp. 4182-4187
Author(s):  
Zhi Yong Ding ◽  
Jing Liang Dai ◽  
Bo Peng

after reasonably analyzing characteristics of flexible fiber reinforcement fragile material, the mechanical model of individual fiber is established while being pulled out from asphalt; the spherical coordinates is adopted to establish the calculation model for short fiber bridging stress evenly distributed in space to calculate the value of bridging stress generated by short fibers while asphalt is breaking; the fiber asphalt sample in big size is adopted to perform low temperature tensile failure test to practically measure bridging stress of short fiber; fit the calculated value and measured value of bridging stress by adjusting parameters in the calculation model to check the rationality of fiber bridging stress in calculation method and model.

Soft Matter ◽  
2021 ◽  
Author(s):  
Brian Tighe ◽  
Karsten Baumgarten

We determine how low frequency vibrational modes control the elastic shear modulus of Mikado networks, a minimal mechanical model for semi-flexible fiber networks. From prior work it is known that...


1976 ◽  
Vol 49 (5) ◽  
pp. 1167-1181 ◽  
Author(s):  
A. Y. Coran ◽  
P. Hamed ◽  
L. A. Goettler

Abstract The measured elastic and strength properties of angle-ply composites of short fibers and rubber depend on test-piece geometry. In general, higher tensile moduli and strengths are obtained when plies are both thin and wide. Once the effects of test-piece geometry are taken into account, elastic properties can be calculated as functions of the properties of a single ply. Classical compliance transformation equations can be used. However, because of the invariance of shear modulus in aligned composites, the tensor transformation equations are somewhat simplified. Tensile strengths of off-axis unidirectional composite plates and balanced-angle plies can be fitted by Hill's criterion. Unidirectional composites tend to fail in the weakest mode, depending on the angle of stress, but laminating causes all principal stresses in a ply to be near their ultimate limit at the time of failure.


2013 ◽  
Vol 328 ◽  
pp. 387-392
Author(s):  
Cai Jun Liu ◽  
Chuan Sheng Wang

The mixing mechanism of short fiber/rubber composite was analyzed. The clearance between the rotor edge peak and mixing chamber influenced mixing, dispersion and length of the short fibers in compound. The new rotor was designed with variable clearance. The large clearance gap improve the mixing, and the small clearance gap helped to improve the dispersion of short fiber. The mixing quality and performance of short fiber/rubber composite were improved by using the new rotor, and the production efficiency increased.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Denghong Chen ◽  
Chao Li ◽  
Xinzhu Hua ◽  
Xiaoyu Lu ◽  
Yongqiang Yuan ◽  
...  

Taking the occurrence conditions of the hard main roof in the deep 13-1 coal mining roadway in Huainan mining area as the research object, based on the mechanical parameters of the surrounding rock and the stress state of the main roof obtained by numerical simulation, a simply supported beam calculation model was established based on the damage factor D, main roof support reaction RA, RB, and critical range C (9 m) and B (7 m) at the elastoplastic junction of the solid coal side and mining face side (hereinafter referred to as “junction”). Considering that the damage area still has a large bearing capacity, the vertical stress of the main roof at the junction is K1γH (0.05γh, 0.15γh, and 0.25γh) and K2γH (0.01γh, 0.10γh, and 0.2γh). The maximum deflection is 21 mm, 324 mm, and 627.6 mm, respectively. According to the criterion of tensile failure, the maximum bending moment of the top beam is 209 mN·m at the side of the working face 3.1 m away from the roadway side when K1 = 0.15 and K2 = 0.10, and the whole hard main roof is in tensile failure except the junction. To control the stability of the top beam and simplify the supporting reaction to limit the deformation of the slope angle, RC and RD are used to construct the statically indeterminate beam. By adding an anchor cable and advance self-moving support to the roadway side angle, the problem of difficult control of the surrounding rock with a large deformation of the side angle roof is solved, which provides a reference for roof control under similar conditions.


2020 ◽  
Author(s):  
Mohammad Rejaur Rahman ◽  
Ishtiak Malique Chowdhury ◽  
Anik Banik ◽  
Emran Hossain Sajib

AbstractPhenotypically similar to B. subtilis, Bacillus atrophaeus is a Gram-positive, aerobic, spore-forming bacteria. It is a black-pigmented bacterial genus. Therefore, it is of interest to study the uncharacterized proteins in the genome. For a detailed computational sequence-structure-function analysis using available data and resources, an uncharacterized protein Mta (AKL87074.1) in the genome was selected. In this study, attempts were made to study the physicochemical properties, predict secondary structure, modeling the 3-D protein, pocket identification, protein-protein interaction and phylogenetic analysis of Mta protein. The predicted active site using CASTp is analyzed for understanding their multidrug resistance function. Because Mta is a MerR family member, these investigations on these functional aspects could lead us for better understanding of antibiotic resistance phenomenon.


2018 ◽  
Vol 38 ◽  
pp. 02022
Author(s):  
Dewei Zhang ◽  
Chuansheng Wang ◽  
Bo Shen ◽  
Shaoming Li ◽  
Huiguang Bian

In recent years, rubber composites reinforced by short fibers has been researched deeply, because of its good performances such as higher wear resistance, higher cut resistance and so on. Some research results indicated that if short fibers get orientation in rubber composites, the performances of rubber products could be promoted greatly. But how to make short fibers get orientation in rubber matrix during extrusion is still a real problem. And there are many parameters affect the short fibers orientation. So, in this paper, the effects of die structure including expansion-die and dam-expansion-die on extrusion flow field of short fiber and rubber composite material during extrusion process has been researched by Polyflow. And the FEA results about the pressure field, velocity field and the velocity vector of the rubber composites flow field indicate that, comparing with expansion-die and the dam-expansion-die, the latter one is better for the extrusion process of rubber composites and making short fibers get radial orientation in rubber matrix.


2015 ◽  
Vol 3 (37) ◽  
pp. 9684-9694 ◽  
Author(s):  
Yi Zhang ◽  
Zhou Wang ◽  
Boliang Zhang ◽  
Chengjun Zhou ◽  
Guang-Lin Zhao ◽  
...  

C–SiC core–shell short fiber fillers improve the electromagnetic interference shielding effectiveness in polymer composites.


2011 ◽  
Vol 474-476 ◽  
pp. 548-552
Author(s):  
Jun Tian

Constant stress tensile creep tests were conducted on AZ91D–20 vol.%, 25 vol.%, and 30 vol.% Al2O3-SiO2short fiber composites and on an unreinforced AZ91D matrix alloy. The creep resistance of the reinforced materials is shown to be considerably improved compared with the matrix alloy. With the increasing volume fraction of short fibers, the creep resistance of AZ91D composites is improved, and their creep threshold stresses are also increased accordingly. Because of the increasing volume fraction of short fibers, loads of bearing and transmission of short fibers will increase, and thus the creep resistance of AZ91D composites further improves, but the precipitation of β-Mg17Al12precipitate increases in the number, it is easy to soften coarse, so that threshold stress of AZ91D composite does not increase greatly.


Sign in / Sign up

Export Citation Format

Share Document