Finite Element Program Design of Bridge Structures with Internal and External Prestressing

2011 ◽  
Vol 250-253 ◽  
pp. 1493-1497
Author(s):  
Jian Yuan Sun ◽  
Yi Chao Yuan ◽  
Kun Peng Li

Recently internal and external prestressing enjoys a booming in the bridge construction, but the existing structural analysis programs of bridge can’t meet the requirements of analyzing the internal and external prestressing comprehensively. This paper will simulate internal and external prestressing effects by the finite element method; come up with some programming methods based on the object-oriented thought; and put forward the design and implementation methods of internal and external prestressing effect class by abstracting them to the corresponding class and elaborating the main features of each class, including the instantiation object and the typical method, to realizing the internal and external prestressing effects calculating. All of these will provide some references to the development of structural analysis program of bridge.

1994 ◽  
Vol 30 (5) ◽  
pp. 3618-3621 ◽  
Author(s):  
E.J. Silva ◽  
R.C. Mesquita ◽  
R.R. Saldanha ◽  
P.F.M. Palmeira

Author(s):  
Sabah Moussaoui ◽  
Mourad Belgasmia

This chapter shows, through the example of the addition of a plate and shell element to freeware FEM-object, an object-oriented (C++) finite element program, how object-oriented approaches, as opposed to procedural approaches, make finite element codes more compact, more modular, and versatile but mainly more easily expandable, in order to improve the continuity and the compatibility between software of research and industrial software. The fundamental traits of object-oriented programming are first briefly reviewed, and it is shown how such an approach simplifies the coding process. Then, the isotropic shell and orthotropic plate formulations used are given and the discretized equations developed. Finally, the necessary additions to the FEM-object code are reviewed. Numerical examples using the newly created plate membrane plate element are shown.


2017 ◽  
Vol 63 (4) ◽  
pp. 51-69
Author(s):  
A. Zbiciak ◽  
M. Ataman ◽  
W. Szcześniak

AbstractThis paper presents the capabilities of ABAQUS finite-element program [1] in modelling sandwich beams and plates resting on deformable foundations. Specific systems of sandwich beams and plates separated by an elastic core layer were subjected to the action of point and distributed moving loads. A few theoretical examples are provided to present different techniques of modelling the foundations and the moving loads. The effects of the boundary conditions and of the foundation parameters on the deflections of the analysed structures are also presented.


1983 ◽  
Vol 105 (3) ◽  
pp. 149-154 ◽  
Author(s):  
M. G. Stevenson ◽  
P. K. Wright ◽  
J. G. Chow

The finite element program developed in previous work [1] for calculating the temperature distributions in the chip and tool in metal machining has been extended in its range of application. Specifically, the program no longer needs a flow field as input and it can accommodate a wide range of shear angle and contact lengths. An important feature of this paper is that temperature fields from the finite element method have been compared with temperatures obtained with a previously described metallographic method [7]. This is the first time these two techniques have been used for the same machining conditions and the comparisons are very good.


Sign in / Sign up

Export Citation Format

Share Document