Research on Elastic-Plastic Seismic Response of Inclined Mega-Structures

2011 ◽  
Vol 255-260 ◽  
pp. 2532-2540
Author(s):  
Nan Zhao ◽  
Lei Xin Jiang

With a special structure system and architectural shape, Kelamayi Exhibition Building has a quite complicated seismic response and dynamic behavior. Based on performance-based seismic design method, vibration characteristics and seismic response under different earthquakes are researched in this paper. Elastic-plastic model is made, and elastic-plastic time history analysis of structure subjected to strong earthquake is carried out, to verify the bearing capacity of the structure according to aseismic behavior indexes. The results of static analysis and elastic-plastic time history analysis show that, the maximum storey drift angle is less than the limit value 1/100. Parts of the structure is in plastic, but not deep, and can be put into use after some repairment. In a word, Kelamayi Exhibition Building can meet the requirement of seismic fortification and fixed aseismic behavior indexed, and have enough seismic bearing capacity.

2012 ◽  
Vol 594-597 ◽  
pp. 886-890 ◽  
Author(s):  
Gan Hong ◽  
Mei Li ◽  
Yi Zhen Yang

Abstract. In the paper, take full account of energy dissipation operating characteristics. Interlayer shear-frame structure for the analysis of the Wilson-Θmethod ELASTOPLASTIC schedule, the design of a nonlinear dynamic time history analysis procedure. On this basis, taking into account the restoring force characteristics of the energy dissipation system, the inflection point in the restoring force model treatment, to avoid a result of the calculation results of distortion due to the iterative error. A frame structure seismic response time history analysis results show that: the framework of the energy dissipation significantly lower than the seismic response of the common framework, and its role in the earthquake when more significant.


2016 ◽  
Vol 858 ◽  
pp. 145-150
Author(s):  
Yu Liang Zhao ◽  
Zhao Dong Xu

This paper discussed an elastic-plastic time-history analysis on a structure with MR dampers based on member model, in which the elastoplastic member of the structure is assumed to be single component model and simulated by threefold line stiffness retrograde model. In order to obtain better control effect, Linear Quadratic Gaussian (LQG) control algorithm is used to calculate the optimal control force, and Hrovat boundary optimal control strategy is used to describe the adjustable damping force range of MR damper. The effectiveness of the MR damper based on LQG algorithm to control the response of the structure was investigated. The results from numerical simulations demonstrate that LQG algorithm can effectively improve the response of the structure against seismic excitations only with acceleration feedback.


2009 ◽  
Vol 25 (3) ◽  
pp. 583-605 ◽  
Author(s):  
Wei Chiang Pang ◽  
David V. Rosowsky

This paper presents a direct displacement design (DDD) procedure that can be used for seismic design of multistory wood-framed structures. The proposed procedure is applicable to any pure shear deforming system. The design procedure is a promising design tool for performance-based seismic design since it allows consideration of multiple performance objectives (e.g., damage limitation, safety requirements) without requiring the engineer to perform a complex finite element or nonlinear time-history analysis of the complete structure. A simple procedure based on normalized modal analysis is used to convert the code-specified acceleration response spectrum into a set of interstory drift spectra. These spectra can be used to determine the minimum stiffness required for each floor based on the drift limit requirements. Specific shear walls can then be directly selected from a database of backbone curves. The procedure is illustrated on the design of two three-story ATC-63 archetype buildings, and the results are validated using nonlinear time-history analysis.


2011 ◽  
Vol 243-249 ◽  
pp. 3889-3892 ◽  
Author(s):  
Tian Li Wang ◽  
Qing Ning Li ◽  
Hai Jun Yin

In order to analyze seismic response of the curved ramp bridge, this paper selected a single curved ramp bridge in a multilevel junction system as its research object. Considering the piers, beams, bearings and expansion joints simulation, it respectively built the calculating models for a curved ramp bridge and a corresponding linear one. Using nonlinear time history analysis, the paper contrasts seismic response of the curved ramp bridge with that of the linear one in several different seismic inputs. Finally the seismic response characteristic of a curved ramp bridge is put forward.


2010 ◽  
Vol 163-167 ◽  
pp. 4295-4300
Author(s):  
Feng Miao ◽  
Lei Shi ◽  
Zhe Zhang

Base on the elastic-plastic analytical theory, an elastic-plastic time-history analysis of self-anchored cable-stayed suspension bridge, which engineering background is Dalian Gulf Cross-sea Bridge program, is performed by using general finite element software Midas/Civil. The material nonlinearity of structure is considered with reinforcement concrete fiber model, and distributed hinge type is adopted to simulate for plastic hinge. Compared with the results of an elastic time-history analysis, it is shown that for the structure into the elastic-plastic stage, because of the production of plastic hinge, the input seismic energy is dissipated partially, and the internal forces of structural elements are reduced. The bending moments and axial forces occur mainly in the main tower root. Furthermore, the rotation properties of the plastic hinge causes displacement increasing of certain parts of the structure, which assumes mainly the vertical displacement present on the top of main tower and the main beam. In conclusion, it is proposed that caging devices are set in the design.


2017 ◽  
Author(s):  
George Wang ◽  
Michelle Loh ◽  
Yen-Tun Peng ◽  
Joanne Shen ◽  
P. E. Genesis ◽  
...  

2015 ◽  
Vol 22 (s1) ◽  
pp. 30-34 ◽  
Author(s):  
Dashan Dong ◽  
Jin Li ◽  
Yuanyuan Teng

Abstract Quayside container crane is a kind of large dimension steel structure, which is the major equipment used for lifting container at modern ports. With the aim to ensure the safety and reliability of the crane under seismic loads, an anti-seismic device is designed. To validate the efficiency and reliability of the anti-seismic device, elastic-plastic time history analysis under rare seismic intensity is carried out. And the results of elastic-plastic time history analysis when the crane installed anti-seismic device and uninstalled the device are compared.


Sign in / Sign up

Export Citation Format

Share Document