Effect of Creep Deformation on the Crystallographic Orientation Distribution in Ni Base Superalloy

2007 ◽  
Vol 26-28 ◽  
pp. 213-216 ◽  
Author(s):  
Toru Inoue ◽  
Katsushi Tanaka ◽  
Hiroki Adachi ◽  
Kyosuke Kishida ◽  
Haruyuki Inui

The crystallographic orientation distribution, and its change as a function of creep deformation in Ni-based single crystal superalloys have been investigated by X-ray diffractometry. The distribution of the crystallographic orientation has significantly broadened by creep deformations. Directional broadening of the distribution agrees with creep dislocations having the burgers vector of 1/2<101>. High temperature creep strain of superalloys can be estimated by a non-destractive test where the width of rocking curve of a diffraction peak is measured.

2006 ◽  
Vol 980 ◽  
Author(s):  
Toru Inoue ◽  
Katsushi Tanaka ◽  
Hiroki Adachi ◽  
Kyosuke Kishida ◽  
Haruyuki Inui

AbstractThe crystallographic orientation distribution, and its change accompanied with tilting γ/γ boundaries in Ni-based single crystal superalloys have been investigated by a theoretical elastic-plastic calculation, X-ray diffractometry and SEM-EBSD analysis. The distribution of the crystallographic orientation has significantly broadened by creep deformations. The broadening can be explained by an unbalance of the amount of creep dislocations of each slip system, which agrees with the result of elastic-plastic calculations. Creep strain of superalloys crept at a condition forming the raft structure can be estimated by the measurement of the width of rocking curve of a diffraction peak.


2013 ◽  
Vol 46 (6) ◽  
pp. 1877-1879 ◽  
Author(s):  
Emil Zolotoyabko

Interrelations between the degree of uniaxial preferred orientation and the intensities and widths of selected X-ray diffraction peaks are analyzed within the March–Dollase approach. Simple analytical expressions are developed which relate the degree of preferred orientation to the rocking curve width of the strongest diffraction peak or the intensity ratio of two diffraction peaks, one of them being originated in the preferably orientated atomic planes.


2005 ◽  
Vol 475-479 ◽  
pp. 619-622 ◽  
Author(s):  
Katsushi Tanaka ◽  
T. Kajikawa ◽  
T. Ichitsubo ◽  
M. Osawa ◽  
Tadaharu Yokokawa ◽  
...  

Internal elastic strain, and its change accompanied with the raft formation during creep deformation in the Ni-based single crystal superalloy (TMS-26) have been investigated by X-ray diffractometry. The elastic strain caused by the lattice misfit between g and g' phases has markedly been changed by creep deformation especially in the directions perpendicular to the [001] tensile axis. The change in the elastic strain can be explained by the effect of creep dislocations stacked at g/g' interfaces. The evolution of the elastic stress field estimated from the elastic strain has explained well the transition from primary creep stage to the second one.


2008 ◽  
Vol 600-603 ◽  
pp. 313-316 ◽  
Author(s):  
Hirotaka Yamaguchi ◽  
Hirofumi Matsuhata ◽  
Ichiro Nagai

We have investigated dislocation image of 4H-SiC wafers projected on synchrotron X-ray topographs taken under different positions in the rocking curve of a diffraction peak. The diffraction geometry was grazing-incidence extremely asymmetric and the diffraction vectors were g = 1 1 2 8 and 112 8. The weak-beam images were demonstrated for basal-plane dislocations and threading-screw dislocations. The basal-plane dislocation images became narrower in width at the off-Bragg conditions, and they were decomposed to separate lines under the weak-beam condition. The threading-screw dislocations showed changes in their shape and contrast as the crystal set was tilted from the rocking-curve peak, and finally the characteristic images near the dislocation core were observed under the weak-beam condition. The origin of these weak-beam images is unclear, but it will offer detailed analysis of the dislocations.


Sign in / Sign up

Export Citation Format

Share Document