ω-Assisted refinement of α phase and its effect on the tensile properties of a near β titanium alloy

2020 ◽  
Vol 44 ◽  
pp. 24-30 ◽  
Author(s):  
Ruifeng Dong ◽  
Jinshan Li ◽  
Hongchao Kou ◽  
Jiangkun Fan ◽  
Yuhong Zhao ◽  
...  
2007 ◽  
Vol 26-28 ◽  
pp. 367-371
Author(s):  
Hong Zhen Guo ◽  
Zhang Long Zhao ◽  
Bin Wang ◽  
Ze Kun Yao ◽  
Ying Ying Liu

In this paper the effect of isothermal forging process parameters on the microstructure and the mechanical properties of TA15 titanium alloy was researched. The results of the tests indicate that, in the range of temperature of 850 °C~980 °C and deformation degree of 20%~60%, with the increase of temperature or deformation, as the reinforcement of deformation recrystallization, the primary α-phase tends to the spherical shape and secondary α-phase transforms from the acicular shape to fine and spherical shape with disperse distribution, which enhance the tensile properties at room and high temperature. With the increment of forging times, the spheroidization of primary α-phase aggrandizes and secondary α-phase transforms from spherical and acicular shape to wide strip shape, which decrease the tensile properties at room and high temperature. The preferable isothermal forging process parameters are temperature of 980 °C, deformation degree of 60%, and few forging times.


2010 ◽  
Vol 97-101 ◽  
pp. 153-157
Author(s):  
Tao Wang ◽  
Hong Zhen Guo ◽  
Jian Hua Zhang ◽  
Ze Kun Yao

The microstructures and room temperature and 600°C tensile properties of Ti-5.8Al-4.0Sn-4.0Zr-0.7Nb -0.4Si-1.5Ta alloy after isothermal forging have been studied. The forging temperature range was from 850°C to 1075°C, and the constant strain rate of 8×10-3/S-1 was adopted. With the increase of forging temperature, the volume fraction of primary α phase decreased and the lamellar α phase became thicker when the temperatures were in range of 850°C -1040°C; The grain size became uneven and the α phase had different forms when the forging temperature was 1040°C and 1075°C respectively; The tensile strength was not sensitive to the temperature and the most difference was within 20MPa. Tensile strength and yield strength attained to the maximum when temperature was 1020°C; the ductility decreased with the increase of forging temperature, and this trend became more obvious if forging temperature was above the β-transus temperature.


2020 ◽  
Vol 321 ◽  
pp. 11048
Author(s):  
Ren Yong ◽  
Yang Nan ◽  
Lei Jinwen ◽  
Li Shaoqiang ◽  
Du Yuxuan

The effects of primary α phase volume fraction on the tensile properties at 400℃ of TC4 titanium alloy was studied by different solution temperature(Tβ-(10~80)℃). The effects of the thick of secondary α phase on the tensile properties at 400℃ of TC4 titanium alloy was studied by different cooling speed after solution treatment (water quench, air cooling, furnace cooling). The results show that with the decrease of primary α phase, the tensile and yield strength increase up, but the ductility has a little change. The thick of secondary α phase increases with the deceases of cooling speed after solution treatment, highest tensile and yield strength by water quench, the tensile strength of air cooling and furnace cooling were basically the same, but the yield strength of furnace cooling was 40MPa lower than air cooling. Therefore, the influence of the primary α phase volume fraction on the tensile strength at 400℃ was particularly obvious, we can control solution treatment and cooling way in combination with different requirements.


Alloy Digest ◽  
1968 ◽  
Vol 17 (2) ◽  

Abstract Titanium IA1-8V-5Fe is an all beta type titanium alloy recommended for high temperature fasteners. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as creep and fatigue. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: Ti-55. Producer or source: Reactive Metals Corporation.


Alloy Digest ◽  
2002 ◽  
Vol 51 (7) ◽  

Abstract Carpenter titanium alloy Ti 6Al-4V ELI is a high-purity (extra-low-interstitial) version of Ti 6Al-4V (see Alloy Digest Ti-60, August 2002). The alloy is alpha plus beta and has good biocompatibility. This datasheet provides information on composition, physical properties, elasticity, tensile properties, and compressive, shear, and bearing strength as well as fatigue. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: TI-129. Producer or source: Carpenter Technology Corporation.


Alloy Digest ◽  
1991 ◽  
Vol 40 (8) ◽  

Abstract ALLVAC 6A1-6V-2Sn is a highly beta stabilized alpha + beta titanium alloy, a modification of the 6 A1-4V system. Added vanadium plus copper and iron produce the stabilizing effect. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as creep. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Ti-98. Producer or source: Teledyne Allvac.


Alloy Digest ◽  
1990 ◽  
Vol 39 (4) ◽  

Abstract Ti-3A1-2.5V is a near-alpha titanium alloy offering 20-50% higher tensile properties than the strongest commercially pure grade of titanium at both room and elevated temperatures. Normally furnished in the annealed, or in the cold-worked stress-relieved condition, Ti-3A1-2.5V titanium alloy features excellent cold formability and good notch tensile properties, as well as corrosion resistance in many environments. This datasheet provides information on composition, physical properties, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Ti-95. Producer or source: Titanium alloy mills.


Alloy Digest ◽  
2007 ◽  
Vol 56 (10) ◽  

Abstract Timetal 685 is a titanium alloy with 6 Al, 5 Zr, 0.5 Mo, and 0.25 Si. It is a near-alpha alloy with high strength and creep resistance. Applications are in the aerospace industry. This datasheet provides information on composition, physical properties, elasticity, tensile properties, and shear strength as well as fracture toughness and creep. It also includes information on forming, heat treating, and joining. Filing Code: TI-142. Producer or source: Timet.


Alloy Digest ◽  
1962 ◽  
Vol 11 (1) ◽  

Abstract Ti-104A is a titanium alloy containing about 2% each of iron, chromium and molybdenum. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and shear strength. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: Ti-5. Producer or source: Titanium Metals Corporation of America. Originally published July 1954, revised January 1962.


Sign in / Sign up

Export Citation Format

Share Document