Low-Temperature Deposition of Amorphous Carbon Films for Surface Passivation of Carbon-Doped Silicon Oxide

2007 ◽  
Vol 26-28 ◽  
pp. 645-648 ◽  
Author(s):  
Keisuke Yamaoka ◽  
Yoshikazu Terai ◽  
Naomichi Okada ◽  
Takashi Yamaguchi ◽  
Yuji Yoshizako ◽  
...  

Low-temperature plasma-enhanced chemical vapor deposition of amorphous carbon (a-C:H) films was investigated for surface passivation of carbon-doped silicon oxide (SiOCH) films. The a-C:H films were deposited using CH4 and Ar gases at 40–65°C. FT-IR results showed that the deposited films are a-C:H which incorporates hydrocarbon groups. In current−voltage measurements, the a-C:H showed a low leakage current of ~10–10 A/cm2 in air, indicating that the a-C:H films have a potential as a surface passivation layer to prevent moisture absorption in air. The insulating properties of room-temperature deposited SiOCH covered by the a-C:H strongly depended on radio frequency (RF) power in the SiOCH deposition. In the SiOCH film deposited at high RF power of 200 W, the resistivity in air was improved by the a-C:H passivation.

2011 ◽  
Vol 1287 ◽  
Author(s):  
Anupama Mallikarjunan ◽  
Laura M Matz ◽  
Andrew D Johnson ◽  
Raymond N Vrtis ◽  
Manchao Xiao ◽  
...  

ABSTRACTThe electrical and physical quality of gate and passivation dielectrics significantly impacts the device performance of thin film transistors (TFTs). The passivation dielectric also needs to act as a barrier to protect the TFT device. As low temperature TFT processing becomes a requirement for novel applications and plastic substrates, there is a need for materials innovation that enables high quality plasma enhanced chemical vapor deposition (PECVD) gate dielectric deposition. In this context, this paper discusses structure-property relationships and strategies for precursor development in silicon nitride, silicon oxycarbide (SiOC) and silicon oxide films. Experiments with passivation SiOC films demonstrate the benefit of a superior precursor (LkB-500) and standard process optimization to enable lower temperature depositions. For gate SiO2 deposition (that are used with polysilicon TFTs for example), organosilicon precursors containing different types and amounts of Si, C, O and H bonding were experimentally compared to the industry standard TEOS (tetraethoxysilane) at different process conditions and temperatures. Major differences were identified in film quality especially wet etch rate or WER (correlating to film density) and dielectric constant (k) values (correlating to moisture absorption). Gate quality SiO2 films can be deposited by choosing precursors that can minimize residual Si-OH groups and enable higher density stable moisture-free films. For e.g., the optimized precursor AP-LTO® 770 is clearly better than TEOS for low temperature PECVD depositions based on density, WER, k charge density (measured by flatband voltage or Vfb); and leakage and breakdown voltage (Vbd) measurements. The design and development of such novel precursors is a key factor to successfully enable manufacturing of advanced low temperature processed devices.


2021 ◽  
pp. 004051752110306
Author(s):  
Honglian Cong ◽  
Boyu Zhao ◽  
Hao Han ◽  
Xuliang Yu

Nine groups of knitted woolen fabrics for sportswear with different technical characteristics were treated with oxygen low-temperature plasma, and the changes in the surface morphology and chemical composition of wool fibers before and after plasma treatment, as well as the changes in the applicability indexes of knitted woolen fabrics, were studied. Finally, the comfort performance of the fabrics was evaluated by combining the concentration mapping method and the function evaluation value method. The analysis found that the surface scales of wool fibers were seriously etched after oxygen low-temperature plasma treatment, and the anti-felting, bursting strength and moisture absorption of the knitted woolen fabrics were improved. At the same time, the quick-drying index of the fabric has also been improved to a certain extent. This research provides a basis for the development of knitted woolen fabric for sportswear with excellent performance.


2018 ◽  
Vol 36 (2) ◽  
pp. 021509 ◽  
Author(s):  
Meiliang Wang ◽  
Haripin Chandra ◽  
Xinjian Lei ◽  
Anupama Mallikarjunan ◽  
Kirk Cuthill ◽  
...  

2018 ◽  
Vol 2018 (1) ◽  
pp. 000728-000733
Author(s):  
Piotr Mackowiak ◽  
Rachid Abdallah ◽  
Martin Wilke ◽  
Jash Patel ◽  
Huma Ashraf ◽  
...  

Abstract In the present work we investigate the quality of low temperature Plasma Enhanced Chemical Vapor Deposition (PECVD) and plasma treated Tetraethyl orthosilicate (TEOS)-based TSV-liner films. Different designs of Trough Silicon Via (TSV) Test structures with 10μm and 20μm width and a depth of 100μm have been fabricated. Two differently doped silicon substrates have been used – highly p-doped and moderately doped. The results for break-through, resistivity and capacitance for the 20μm structures show a better performance compared to the 10μm structures. This is mainly due to increased liner thickness in the reduced aspect ratio case. Lower interface traps and oxide charge densities have been observed in the C-V measurements results for the 10μm structures.


1996 ◽  
Vol 443 ◽  
Author(s):  
Seoghyeong Lee ◽  
Jae-Yoon Yoo ◽  
Jong-Wan Park

AbstractThe reliability of SiOF films for intermetal dielectrics in multilevel interconnections of ULSIs is investigated. SiOF films were deposited by ECRCVD using H-free source gases, i.e., SiF4 and O2. The effect of post plasma treatment on the moisture absorption and dielectric properties of SiOF films were carried out in terms of air exposure time. The reliability test of Cu / TiN / SiOF / Si specimen was carried out in terms of temperatures by RTA in N2 ambient. After O2 plasma treatment, no appreciable peak directly related to moisture absorption was detected. The C-V characteristics of the O2 plasma treated SiOF film showed that the film remained to hold the sound dielectric properties even after boiling treatment. The Cu / TiN / SiOF / Si system was found to be reliable up to 600 °C.


Sign in / Sign up

Export Citation Format

Share Document