Stress Strain Analysis of Steel Specimens Not Wholly Quenched

2011 ◽  
Vol 261-263 ◽  
pp. 702-706
Author(s):  
Rui Jie Wang ◽  
He Ming Cheng ◽  
Bao Dong Shao ◽  
Jian Yun Li

A finite element model of not wholly quenched steel fatigue specimen is established. Hardness value of some distance to work piece surface are assumed different and cyclic strength coefficients of different zones are different, both is assumed to be proportional to hardness value. Elasto-plastic finite element analysis was carried out for this model. According to the stress-strain distribution on transverse section, the effect of not wholly quenched on fatigue crack initiation life is analyzed.

Author(s):  
А. Г. Гребеников ◽  
И. В. Малков ◽  
В. А. Урбанович ◽  
Н. И. Москаленко ◽  
Д. С. Колодийчик

The analysis of the design and technological features of the tail boom (ТB) of a helicopter made of polymer composite materials (PCM) is carried out.Three structural and technological concepts are distinguished - semi-monocoque (reinforced metal structure), monocoque (three-layer structure) and mesh-type structure. The high weight and economic efficiency of mesh structures is shown, which allows them to be used in aerospace engineering. The physicomechanical characteristics of the network structures are estimated and their uniqueness is shown. The use of mesh structures can reduce the weight of the product by a factor of two or more.The stress-strain state (SSS) of the proposed tail boom design is determined. The analysis of methods for calculating the characteristics of the total SSS of conical mesh shells is carried out. The design of the tail boom is presented, the design diagram of the tail boom of the transport category rotorcraft is developed. A finite element model was created using the Siemens NX 7.5 system. The calculation of the stress-strain state (SSS) of the HC of the helicopter was carried out on the basis of the developed structural scheme using the Advanced Simulation module of the Siemens NX 7.5 system. The main zones of probable fatigue failure of tail booms are determined. Finite Element Analysis (FEA) provides a theoretical basis for design decisions.Shown is the effect of the type of technological process selected for the production of the tail boom on the strength of the HB structure. The stability of the characteristics of the PCM tail boom largely depends on the extent to which its design is suitable for the use of mechanized and automated production processes.A method for the manufacture of a helicopter tail boom from PCM by the automated winding method is proposed. A variant of computer modeling of the tail boom of a mesh structure made of PCM is shown.The automated winding technology can be recommended for implementation in the design of the composite tail boom of the Mi-2 and Mi-8 helicopters.


TAPPI Journal ◽  
2012 ◽  
Vol 11 (1) ◽  
pp. 61-66 ◽  
Author(s):  
DOEUNG D. CHOI ◽  
SERGIY A. LAVRYKOV ◽  
BANDARU V. RAMARAO

Delamination between layers occurs during the creasing and subsequent folding of paperboard. Delamination is necessary to provide some stiffness properties, but excessive or uncontrolled delamination can weaken the fold, and therefore needs to be controlled. An understanding of the mechanics of delamination is predicated upon the availability of reliable and properly calibrated simulation tools to predict experimental observations. This paper describes a finite element simulation of paper mechanics applied to the scoring and folding of multi-ply carton board. Our goal was to provide an understanding of the mechanics of these operations and the proper models of elastic and plastic behavior of the material that enable us to simulate the deformation and delamination behavior. Our material model accounted for plasticity and sheet anisotropy in the in-plane and z-direction (ZD) dimensions. We used different ZD stress-strain curves during loading and unloading. Material parameters for in-plane deformation were obtained by fitting uniaxial stress-strain data to Ramberg-Osgood plasticity models and the ZD deformation was modeled using a modified power law. Two-dimensional strain fields resulting from loading board typical of a scoring operation were calculated. The strain field was symmetric in the initial stages, but increasing deformation led to asymmetry and heterogeneity. These regions were precursors to delamination and failure. Delamination of the layers occurred in regions of significant shear strain and resulted primarily from the development of large plastic strains. The model predictions were confirmed by experimental observation of the local strain fields using visual microscopy and linear image strain analysis. The finite element model predicted sheet delamination matching the patterns and effects that were observed in experiments.


Author(s):  
Sydney Harwood ◽  
Parisa Saboori

Abstract The current walking frame used by the elderly has several design issues that can cause long term health problems. One of these problems is the development of chronic pain in the lower back. The design of the current walking frame promotes a slumping posture that causes a curvature in the spine. This curvature results in a large strain in the lower back muscles, specifically the erector spinae. The goal of this research was to design a new walking frame that would be more structurally sound and more practical to use than the present walking frame design. In this study, two literature searches were performed. The first was to explore how aging effects the ability to walk. The second involved studying all of the existing walking devices and analyzing their design strengths and weaknesses. As a result of these studies, three new preliminary walking frame designs were considered that promoted better posture when used, and provided more support than does the present walking frame design. These new designs were considered and tested using a finite element analysis (FEA). From this FEA, it was determined that the new walking frame design resulted in less stress in the lower back than does the present walking frame design. It was therefore concluded that the new model has the potential to decease chronic back pain.


2008 ◽  
Vol 130 (6) ◽  
Author(s):  
Matthew C. Paul ◽  
Liam P. Glennon ◽  
Thomas E. Baer ◽  
Thomas D. Brown

Scratches on the metal bearing surface of metal-on-polyethylene total joint replacements have been found to appreciably accelerate abrasive/adhesive wear of polyethylene, and constitute a source of the considerable variability of wear rate seen within clinical cohorts. Scratch orientation with respect to the local direction of relative surface sliding is presumably a factor affecting instantaneous debris liberation during articulation. A three-dimensional local finite element model was developed, of orientation-specific polyethylene articulation with a scratched metal counterface, to explore continuum-level stress/strain parameters potentially correlating with the orientation dependence of scratch wear in a corresponding physical experiment. Computed maximum stress values exceeded the yield strength of ultra-high molecular weight polyethylene (UHMWPE) for all scratch orientations but did not vary appreciably among scratch orientations. Two continuum-level parameters judged most consistent overall with the direction dependence of experimental wear were (1) cumulative compressive total normal strain in the direction of loading, and (2) maximum instantaneous compressive total normal strain transverse to the sliding direction. Such stress/strain metrics could be useful in global computational models of wear acceleration, as surrogates to incorporate anisotropy of local metal surface roughening.


2012 ◽  
Vol 557-559 ◽  
pp. 300-303
Author(s):  
Cheng Hong Duan ◽  
Xiang Peng Luo ◽  
Nan Zhang

In this paper, a finite element model of a composite gas cylinder was established by ABAQUS finite element software, with consideration that both heads were helically wound and their wound angle and wound thickness varied with different parallel circle radius. Stress of the composite gas cylinder and PEEQ of its liner under different working conditions after autofrettage treatment were studied, the stress distribution was assessed by the DOT CFFC standard and the effective range of autofrettage treatment was confirmed. This finite element analysis method may be referable to the design and inspection of composite gas cylinders.


Author(s):  
Ketul Arvindbhai Patel ◽  
Ganesh R. Karthikeyan ◽  
S. Vincent

Determining mechanical properties of Bulk Metallic Glasses (BMGs) requires synthesizing of the alloys in bulk form. However obtaining metallic glass in bulk form is quite challenging due to its tendency towards crystallization. In such circumstances it is beneficial to determine the mechanical properties of materials using finite elemental analysis of microstructures. Thus, in the present investigation, using Object Oriented Finite Element Analysis (OOF2) software package, Stress-Strain analysis has been carried out on Zr60Cu10Al15Ni15 BMG to determine such mechanical properties. Specimen of Zr60Cu10Al15Ni15 BMG exhibiting three microstructurally distinct regions amorphous, partial crystalline and crystalline regions was used for this analysis. The Stress-Strain relationship have been estimated for each of the three distinct phases and the results are validated by determining the Modulus of Elasticity for all the phases and comparing it with the available experimental results from Nano-indentation test.


2012 ◽  
Vol 532-533 ◽  
pp. 272-276
Author(s):  
Hong Shen ◽  
Yu Feng Deng ◽  
Jian Hao

This article showed that the research of the process of drilling medical titanium sheet. Internal stress, strain and temperature distribution could not be seen, so based on Finite element analysis software, establishing finite element model of the process of drilling. On the basis of the inspection and studying existing drilling technology, three options were proposed .In view of stress, strain, temperature, and axial force, analyze the process of drilling titanium sheet. The results showed that penetration rate in 1000r/min and feed in 0.04mm/r, twist drill drilling medical titanium sheet is more reasonable.


2013 ◽  
Vol 676 ◽  
pp. 145-148
Author(s):  
Hong Ying Wang ◽  
Wei Guo

Carried on finite element analysis using the UG software to finally carry on the fatigue life’s computational method to carry on the exploration and the research. when carrying on the finite element stress strain analysis to the piston pin, used the different analysis method, because the piston pin’s quality is very slightly oppositeing to the piston quality, produces the force of inertia is very small, the counter stress computed result is not very obvious, therefore to piston pin finite element analysis we uses conventional algorithm that infliction boundary condition.


Author(s):  
M. Rudra Goud ◽  
C. Manjunatha ◽  
M. Venkateshwarlu ◽  
B. V. A. Patnaik

The service life of critical aerospace components is governed by the modes of degradation and failure such as: yielding, fatigue, fracture, creep, corrosion, wear, etc. A single disc is used for over-speed and burst-speed tests to know the growths (plastic deformation). In this paper, a cyclic symmetry sector of disc model with non linear elastic-plastic material is considered. A non-linear finite element method is utilized to determine the stress and strain state of the disc under over-speed and burst-speed conditions using material stress strain curves. Permanent growths and strains obtained from the over-speed analysis are incorporated in the burst-speed Finite element Model. The original stress strain curve used in over-speed analysis is modified with plastic strain and used in burst-speed analysis of same disc. Elastic strains obtained from the over-speed and burst-speed analysis are utilized in stress strain relationship equations to calculate the permanent growths at critical locations of disc. Growths predicted from Analysis are comparable with the experimental results of disc where a maximum variation of 11% at bore and rim of disc is observed.


Sign in / Sign up

Export Citation Format

Share Document