Determination of Uniaxial Flow Stress Curve Using Aero-Bulge Test for Very Thin Copper Sheet

2011 ◽  
Vol 264-265 ◽  
pp. 608-613 ◽  
Author(s):  
J. Kim ◽  
J. Suh ◽  
Hartmut Hoffmann ◽  
Roland Golle

Determination of the flow stress curve is an important step for precisely describing material behavior in Finite Element simulations. The flow stress curve is generally determined by taking a uniaxial tensile test as a standard. In the case of very thin sheet, since the fracture is generated at a low strain, there is not enough uniaxial data obtained to be applied in the FE simulation. The reason for this is that charactering plastic deformation at a large strain values by extrapolating a flow stress curve which is based on insufficient measurement data is highly susceptible to error. Bulge test is useful method for determining the equivalent biaxial flow stress curve up to a large strain. In this paper, the biaxial flow stresses curve for very thin copper sheet with thickness 35 and 50 μm were determined using the aero-bulge test. A new empirical model was derived for the estimation of the sheet thickness at the pole. After the compatibility between uniaxial and biaxial flow stresses was verified, the uniaxial flow stress curve was determined from the aero-bulge test using reverse engineering. The methodology of extrapolation of the flow stress curve at a large strain was finally proposed for application in FE simulations.

Author(s):  
Eren Billur ◽  
Muammer Koc¸

Hydraulic bulge testing is a material characterization method used as an alternative to tensile testing with the premise of accurately representing the material behavior to higher strain levels (∼70% as appeared to ∼30% in tensile test) in a biaxial stress mode. However, there are some major assumptions (such as continuous hemispherical bulge shape, thinnest point at apex) in hydraulic bulge analyses that lead to uncertainties in the resulting flow stress curves. In this paper, the effect of these assumptions on the accuracy and reliability of flow stress curves is investigated. The goal of this study is to determine the most accurate method for analyzing the data obtained from the bulge testing when continuous and in-line thickness measurement techniques are not available. Specifically, in this study the stress-strain relationships of two different materials (SS201 and Al5754) are obtained based on hydraulic bulge test data using various analysis methods for bulge radius and thickness predictions (e.g., Hill’s, Chakrabarty’s, Panknin’s theories, etc.). The flow stress curves are calculated using pressure and dome height measurements and compared to the actual 3-D strain measurement from a stereo optical and non-contact measurement system ARAMIS. In addition, the flow stress curves obtained from stepwise experiments are compared with the ones from above methods. Our findings indicate that Enikeev’s approach for thickness prediction and Panknin’s approach for bulge radius calculation result in the best agreement with both stepwise experiment results and 3D optical measurement results.


2013 ◽  
Vol 554-557 ◽  
pp. 182-189 ◽  
Author(s):  
Bruno Martins ◽  
Abel D. Santos ◽  
Pedro Teixeira ◽  
K. Ito ◽  
N. Mori

The standard uniaxial tensile test is the widely accepted method to obtain relevant properties of mechanical characterization of sheet metal materials. However the range of strain obtained from tensile test is limited. The bulge test is an alternative to obtain ranges of deformation, higher than tensile test, thus permitting a better characterization for material behaviour. This paper presents a sensitivity analysis for some influencing variables used in bulge measurements, thus giving some guidelines for the evaluation of the stress-strain curve from experimental results using a developed experimental mechanical system. Additionally, using bulge test up to fracture shall give material information regarding damage, which in turn may be used to evaluate and calibrate damage models. A methodology is presented to be used for evaluation and calibration of Ito-Goya damage model of damage prediction.


2013 ◽  
Vol 753-755 ◽  
pp. 913-917 ◽  
Author(s):  
Long Ping Shen ◽  
Zhao Yang Jin ◽  
Juan Liu

According to the different softening mechanism, a flow stress model for magnesium alloy AZ31B is established. At the stage of dynamic recovery (DRV), the effect of work hardening (WH) and DRV on flow stress is described by dislocation evolution model. At the stage of dynamic recrystallization (DRX), the flow stress curve is obtained from Avrami equation denoting the recryatallization kinetics. Model parameter and its dependence on deformation condition are identified by the measured flow stress curve. The calculated curves agree well with the measured ones, which demonstrate the availability of the method.


2018 ◽  
Vol 1063 ◽  
pp. 012159
Author(s):  
Hiroshi Utsunomiya ◽  
Yohei Noguchi ◽  
Woo-Young Kim ◽  
R. Matsumoto

2020 ◽  
Vol 856 ◽  
pp. 128-134
Author(s):  
Chalida Udomraksasakul ◽  
Thanasan Intarakumthornchai ◽  
Yingyot Aue-u-Lan

Hydraulic bulge test or biaxial test is a well-known mechanical test used to determine a flow stress of material because of the large level of effective strains and not interfered by the necking unlike in uniaxial tensile test. However, the flow stress obtained is influenced by the anisotropy effect. That flow stress needs to be corrected by the anisotropic values (r-values) obtained from the uniaxial tensile test which limited by the necking. Therefore, to obtain the accurate flow stress the r-values should be determined directly from the biaxial test. The elliptical tests with ratio of 2 (the ratio between major and minor axis) at different sheet orientations (0๐ and 90๐ from the rolling direction) and the equibiaxial test were proposed. In this research, the effect of the sheet orientations upon the flow stress (K and n values) under biaxial tests was investigated by experiment and equation of material grade SPCD with the thickness of 0.8mm. The results showed that the flow stress without correcting r-values gave more variations than those with correcting one with the r-values obtained from the uniaxial test. Therefore, the r-values used to correct the flow stress under biaxial test should be directly determined from the biaxial test.


2014 ◽  
Vol 81 ◽  
pp. 1079-1083 ◽  
Author(s):  
Adam Groseclose ◽  
Hyun-Sung Son ◽  
Jim Dykeman ◽  
Taylan Altan
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document