Utilization of bulge and uniaxial tensile tests for determination of flow stress curves of selected anisotropic alloys

Author(s):  
Milad Janbakhsh ◽  
Faramarz Djavanroodi ◽  
Mohammad Riahi
Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 252
Author(s):  
Rongchuang Chen ◽  
Shiyang Zhang ◽  
Xianlong Liu ◽  
Fei Feng

To investigate the effect of hot working parameters on the flow behavior of 300M steel under tension, hot uniaxial tensile tests were implemented under different temperatures (950 °C, 1000 °C, 1050 °C, 1100 °C, 1150 °C) and strain rates (0.01 s−1, 0.1 s−1, 1 s−1, 10 s−1). Compared with uniaxial compression, the tensile flow stress was 29.1% higher because dynamic recrystallization softening was less sufficient in the tensile stress state. The ultimate elongation of 300M steel increased with the decrease of temperature and the increase of strain rate. To eliminate the influence of sample necking on stress-strain relationship, both the stress and the strain were calibrated using the cross-sectional area of the neck zone. A constitutive model for tensile deformation was established based on the modified Arrhenius model, in which the model parameters (n, α, Q, ln(A)) were described as a function of strain. The average deviation was 6.81 MPa (6.23%), showing good accuracy of the constitutive model.


Author(s):  
J. Brnic ◽  
M. Canadija ◽  
G. Turkalj ◽  
D. Lanc

In this paper, some interesting, experimentally determined actualities referring to the 50CrMo4 steel are presented. That way, the mechanical properties of the material are derived from uniaxial tensile tests at lowered and elevated temperatures. Engineering stress versus strain diagrams for both mentioned temperatures, curves representing the effect of temperature on specimen elongation, and short-time creep curves are given. Notch impact energy test was also carried out. Taking into consideration the service life of the final product of the mentioned steel widely used in engine and machine technology, all of the mentioned data may be relevant during design and manufacturing procedure.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Yong Peng ◽  
Xuanzhen Chen ◽  
Shan Peng ◽  
Chao Chen ◽  
Jiahao Li ◽  
...  

In order to study the dynamic and fracture behavior of 6005 aluminum alloy at different strain rates and stress states, various tests (tensile tests at different strain rates and tensile shearing tests at five stress states) are conducted by Mechanical Testing and Simulation (MTS) and split-Hopkinson tension bar (SHTB). Numerical simulations based on the finite element method (FEM) are performed with ABAQUS/Standard to obtain the actual stress triaxialities and equivalent plastic strain to fracture. The results of tensile tests for 6005 Al show obvious rate dependence on strain rates. The results obtained from simulations indicate the feature of nonmonotonicity between the strain to fracture and stress triaxiality. The equivalent plastic strain reduces to a minimum value and then increases in the stress triaxiality range from 0.04 to 0.30. A simplified Johnson-Cook (JC) constitutive model is proposed to depict the relationship between the flow stress and strain rate. What is more, the strain-rate factor is modified using a quadratic polynomial regression model, in which it is considered to vary with the strain and strain rates. A fracture criterion is also proposed in a low stress triaxiality range from 0.04 to 0.369. Error analysis for the modified JC model indicates that the model exhibits higher accuracy than the original one in predicting the flow stress at different strain rates. The fractography analysis indicates that the material has a typical ductile fracture mechanism including the shear fracture under pure shear and the dimple fracture under uniaxial tensile.


2017 ◽  
Vol 62 (4) ◽  
pp. 2081-2087 ◽  
Author(s):  
T. Pała ◽  
I. Dzioba

Abstract The paper presents the results of two butt welded joints by conventional method. The welding process was performed using a variety of linear welding energy. The studies included experimental and computational part. In experimental studies determined the distribution of hardness and mechanical properties of the individual analyzed sections of welded joints. The data obtained were intended to determine the extent of zones in the welded joints that have certain strength characteristics. Also conducted uniaxial tensile tests of welded joints with the registration of displacement fields on the surface of specimens by means of Aramis video-system what the final result are images of strain fields map on the surface of welded joints. The resulting strain values were compared with the results of numerical computations FEM.


2015 ◽  
Vol 651-653 ◽  
pp. 950-956 ◽  
Author(s):  
Mohamad Idriss ◽  
Olivier Bartier ◽  
Gérard Mauvoisin ◽  
Charbel Moussa ◽  
Eddie Gazo Hanna ◽  
...  

This work consists of determining the plastic strain value undergone by a material during a forming process using the instrumented indentation technique (IIT). A deep drawing steel DC01 is characterized using tensile, shear and indentation tests. The plastic strain value undergone by this steel during uniaxial tensile tests is determined by indentation. The results show that, the identification from IIT doesn’t lead to an accurate value of the plastic strain if the assumption that the hardening law follows Hollomon law is used. By using a F.E. method, it is shown that using a Voce hardening law improves significantly the identification of the hardening law of a pre-deformed material. Using this type of hardening law coupled to a methodology based on the IIT leads to an accurate determination of the hardening law of a pre-deformed material. Consequently, this will allow determining the plastic strain value and the springback elastic strain value of a material after a mechanical forming operation.


2012 ◽  
Vol 591-593 ◽  
pp. 949-954
Author(s):  
Jun Jie Xiao ◽  
Dong Sheng Li ◽  
Xiao Qiang Li ◽  
Chao Hai Jin ◽  
Chao Zhang

Uniaxial tensile tests were performed on a Ti-6Al-4V alloy sheet over the temperature range of 923K-1023K with the strain rates of 5×10-4s-1-5×10-2s-1 up to a 25% length elongation of the specimen. The true stress-strain curves reveal that the flow stress decreases with the increase of the temperature and the decrease of the strain rate. In the same process, the accompanying softening role increases. It is found that the Ti-6Al-4V shows the features of non-linearity, temperature sensitivity and strain rate dependence in hot environment. Finally, an Arrhenius-type law has been established to predict the experimental data and the prediction precision was verified by the plotting of parameter and flow stress, which revealed that the error of stress exponent was only 4.99%. This indicates the flow stress model has high precision and can be used for the process design and the finite element simulation of hot forming thin-wall Ti-6Al-4V alloy components.


2016 ◽  
Vol 821 ◽  
pp. 435-441 ◽  
Author(s):  
Denisa Bártková ◽  
Jiří Langer ◽  
Petr Dymáček ◽  
Libor Válka

Tests on miniature samples are increasingly used for the determination of mechanical properties of materials available in small volumes (non-destructive or semi-destructive approach). Small punch testing at constant deflection rate (SPT-CDR) of selected magnesium alloys and composites was performed at room temperature. Mechanical properties (yield strength, ultimate strength) were evaluated from SPT and correlated with results of uniaxial tensile tests (UTT). SPT characteristics were converted to uniaxial tensile properties by empirical formulas available in the literature. New formulas more appropriate for magnesium alloys were suggested.


2014 ◽  
Vol 660 ◽  
pp. 332-336 ◽  
Author(s):  
Mohd Khir Mohd Nor ◽  
Ibrahim Mohamad Suhaimi

Superplastic forming, SPF is a special metalworking process that allows sheets of metal alloys such as aluminum to be stretched to lengths over ten times. Nowdays, only a few aluminium alloys can meet the specific requirement of SPF manufacturing process and not much data available to represent their mechanical behaviour. In order to deal with this issue, this research project is conducted to investigate the characteristics of commercial aluminum alloy, AA5083 when tested at different strain rates and temperatures. These parameters play a crucial roles in the design and manufacturing processes of military, automotive and aerospace structures. Equally, the effects must be considered in the constitutive model development to accurately capture the deformation behaviour of such materials. The specimens were prepared according to 12.5mm gauge length standard. The Uniaxial Tensile Tests were carried out at various strain rate from 4.167 x10-1s-1to 4.167 x10-5s-1over a wide temperature range from ambient to 95°C. The experimental data shows that increasing strain rate increases flow stress, while increasing temperature decrease flow stress. This is leads to important conclusion that material AA5083 exhibits strain rate and temperature sensitivite, and suit with the SPF operating condition.


2005 ◽  
Vol 495-497 ◽  
pp. 1097-1102 ◽  
Author(s):  
S. Bouvier ◽  
B. Gardey ◽  
Thierry Chauveau ◽  
Brigitte Bacroix

Two-stage sequences of simple shear and/or uniaxial tensile tests conducted on TRIP800 steel sheet and supplemented by texture measurements are reported. The purpose is a better understanding of the macroscopic work-hardening behaviour and its microstructural origin. According to the previously published work on single phase ferrite steel; the peculiar macroscopic transient effect in flow stress was mainly associated to the microstructural destabilization (e.g. reinforcement, dissolution or rearrangement of the previously formed dislocation walls). In addition, the macroscopic work-softening observed at the beginning of the second stage of cross-loading was attributed to the micro-band occurrence. Considering the actual multiphase steel, the main difference lies in the absence of the peculiar transient effect in flow stress upon cross-loading (where no macroscopic work-softening is observed) and the associated microstructural mechanisms (no formation of micro-bands). Besides, the initial texture for the actual multiphase steel is in some extent different to the previously investigated single phase steel mainly made up of the γ-fibre. Therefore, a detailed analysis of the measured deformed textures is carried out in order to investigate the contribution of the texture evolution on the macroscopic work-hardening. The computations of the orientation stability map as well as the predicted texture evolutions using the classical full constraint Taylor- Bishop-Hill (TBH) model are performed for a better understanding of the observed texture development. The influence of the texture evolution on the shape of the stress-strain curves, as well as on the remaining symmetries of the material, is also discussed. Explicitly, we show that despite the presence of a well developed texture in the as-received and deformed material, the contribution of the geometrical hardening (i.e. textural evolution) on the macroscopic behaviour remains small compared to the microstructural one.


Sign in / Sign up

Export Citation Format

Share Document