The Effects of Material Thickness and Deformation Speed on Springback Behavior of DP600 Steel

2011 ◽  
Vol 264-265 ◽  
pp. 636-645
Author(s):  
Serkan Toros ◽  
Suleyman Kilic ◽  
Fahrettin Ozturk

In the present study, the effects of deformation speeds, sheet thickness, and widths on the springback were investigated experimentally and numerically using a 60o V-shaped bending for DP600 steel. Results reveal that the springback was significantly decreased with increasing thicknesses and deformation speed including 125 mm/min in the range of 5-500 mm/min. The effects of widths on springback were found to be inconsiderable.

2011 ◽  
Vol 189-193 ◽  
pp. 2864-2868
Author(s):  
Komgrit Lawanwong

Bending process is an important process in the metal sheet forming in many industries. The main problem of the bending process is the spring-back phenomenon after removing the punch. This research aims the investigation on effect of residual stress on springback behavior of sheet metal in U bending process. The corner setting technique and bottoming process were designed for experiments. The corner setting technique and bottoming has reduced the thickness in bending area to 5, 10, 15 and 20 percent of the original sheet thickness. Clearance between punch and die of both processes was equal to same the thickness. The residual stress value and springback phenomenal were investigated by commercial program code DEFORM 2D which was able to analyze the effect stress and force in bending area. Electrolytic zinc coated carbon steel grade JIS; SECC, JIS; 440 and JIS; 590 which having the thickness of 1 mm were employed as the workpiece material for all experiments. The result of three materials in conventional U bending die shows larger spring back than the corner setting technique and bottoming process. Moreover, the corner setting technique reduces spring back value in bending process but requires high bending force. Corner setting technique and bottoming process at 15% and 20% shows that the spring go of all parts. The FEM simulation results explained the effect of residual stress to springback phenomenal. Comparisons between experimental and finite element method results were also performed.


1995 ◽  
Vol 2 (3) ◽  
pp. 259-266 ◽  
Author(s):  
Mahmoud F. Maghrebi ◽  
Kiyosi Kawanisi ◽  
Shoitiro Yokosi
Keyword(s):  

2020 ◽  
Vol 38 (4A) ◽  
pp. 552-560
Author(s):  
Anwar H. Zabon ◽  
Aseel H. Abed

Springback forecasting of sheet formation is constantly remarkable problem in the métier, due to their influence the great in the definitive shape of the product. Study presents effects of pretension in tow rolling direction (0, 45 degree) on the springback behavior of the (Brass 65-35) sheet under V-die bending by an experimental. The pretension ranges from five different pretensions levels starting from 11% to 55% from total strain in each rolling direction by increment of 11%. used in punching that was performed at a constant deformation velocity of (5 mm/min) then bent on a 90° V-shaped die for the springback evaluation. The results from experiment indicate that the springback increase with pretension ratio and the springback in 45 degree is higher in rolling direction.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3993
Author(s):  
Thanh Trung Do ◽  
Pham Son Minh ◽  
Nhan Le

The formability of the drawn part in the deep drawing process depends not only on the material properties, but also on the equipment used, metal flow control and tool parameters. The most common defects can be the thickening, stretching and splitting. However, the optimization of tools including the die and punch parameters leads to a reduction of the defects and improves the quality of the products. In this paper, the formability of the camera cover by aluminum alloy A1050 in the deep drawing process was examined relating to the tool geometry parameters based on numerical and experimental analyses. The results showed that the thickness was the smallest and the stress was the highest at one of the bottom corners where the biaxial stretching was the predominant mode of deformation. The problems of the thickening at the flange area, the stretching at the side wall and the splitting at the bottom corners could be prevented when the tool parameters were optimized that related to the thickness and stress. It was clear that the optimal thickness distribution of the camera cover was obtained by the design of tools with the best values—with the die edge radius 10 times, the pocket radius on the bottom of the die 5 times, and the punch nose radius 2.5 times the sheet thickness. Additionally, the quality of the camera cover was improved with a maximum thinning of 25% experimentally, and it was within the suggested maximum allowable thickness reduction of 45% for various industrial applications after optimizing the tool geometry parameters in the deep drawing process.


2021 ◽  
Vol 11 (11) ◽  
pp. 4925
Author(s):  
Jennifer Milaor Llanto ◽  
Majid Tolouei-Rad ◽  
Ana Vafadar ◽  
Muhammad Aamir

Abrasive water jet machining is a proficient alternative for cutting difficult-to-machine materials with complex geometries, such as austenitic stainless steel 304L (AISI304L). However, due to differences in machining responses for varied material conditions, the abrasive waterjet machining experiences challenges including kerf geometric inaccuracy and low material removal rate. In this study, an abrasive waterjet machining is employed to perform contour cutting of different profiles to investigate the impacts of traverse speed and material thickness in achieving lower kerf taper angle and higher material removal rate. Based on experimental investigation, a trend of decreasing the level of traverse speed and material thickness that results in minimum kerf taper angle values of 0.825° for machining curvature profile and 0.916° for line profiles has been observed. In addition, higher traverse speed and material thickness achieved higher material removal rate in cutting different curvature radii and lengths in line profiles with obtained values of 769.50 mm3/min and 751.5 mm3/min, accordingly. The analysis of variance revealed that material thickness had a significant impact on kerf taper angle and material removal rate, contributing within the range of 69–91% and 62–69%, respectively. In contrast, traverse speed was the least factor measuring within the range of 5–18% for kerf taper angle and 27–36% for material removal rate.


2021 ◽  
Vol 13 (12) ◽  
pp. 2425
Author(s):  
Yiheng Cai ◽  
Dan Liu ◽  
Jin Xie ◽  
Jingxian Yang ◽  
Xiangbin Cui ◽  
...  

Analyzing the surface and bedrock locations in radar imagery enables the computation of ice sheet thickness, which is important for the study of ice sheets, their volume and how they may contribute to global climate change. However, the traditional handcrafted methods cannot quickly provide quantitative, objective and reliable extraction of information from radargrams. Most traditional handcrafted methods, designed to detect ice-surface and ice-bed layers from ice sheet radargrams, require complex human involvement and are difficult to apply to large datasets, while deep learning methods can obtain better results in a generalized way. In this study, an end-to-end multi-scale attention network (MsANet) is proposed to realize the estimation and reconstruction of layers in sequences of ice sheet radar tomographic images. First, we use an improved 3D convolutional network, C3D-M, whose first full connection layer is replaced by a convolution unit to better maintain the spatial relativity of ice layer features, as the backbone. Then, an adjustable multi-scale module uses different scale filters to learn scale information to enhance the feature extraction capabilities of the network. Finally, an attention module extended to 3D space removes a redundant bottleneck unit to better fuse and refine ice layer features. Radar sequential images collected by the Center of Remote Sensing of Ice Sheets in 2014 are used as training and testing data. Compared with state-of-the-art deep learning methods, the MsANet shows a 10% reduction (2.14 pixels) on the measurement of average mean absolute column-wise error for detecting the ice-surface and ice-bottom layers, runs faster and uses approximately 12 million fewer parameters.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4284
Author(s):  
Lvtao Zhu ◽  
Mahfuz Bin Rahman ◽  
Zhenxing Wang

Three-dimensional integrated woven spacer sandwich composites have been widely used as industrial textiles for many applications due to their superior physical and mechanical properties. In this research, 3D integrated woven spacer sandwich composites of five different specifications were produced, and the mechanical properties and performance were investigated under different load conditions. XR-CT (X-ray computed tomography) images were employed to visualize the microstructural details and analyze the fracture morphologies of fractured specimens under different load conditions. In addition, the effects of warp and weft direction, face sheet thickness, and core pile height on the mechanical properties and performance of the composite materials were analyzed. This investigation can provide significant guidance to help determine the structure of composite materials and design new products according to the required mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document