Study on Simulation Model of the Cellular Automaton for Passive Lane-Changing Based on the Avoidance of the Prospective Following Vehicle

2011 ◽  
Vol 268-270 ◽  
pp. 1627-1632
Author(s):  
Jing Bian ◽  
Hong Zhuang ◽  
Wei Li

It is the key fact for the accuracy of traffic simulation that the cellular automation model of traffic flow could simulate the real hybrid traffic flow. This article shows the method to improve cellular automaton model about two-lane hybrid vehicles based on passive lane-changing, to propose the avoidance rules about the prospective following vehicle, and to suggest the cellular automaton model and evolution rules based on the prospective following vehicle’s avoider. The simulation results show that the erroneous judgment rate for changing lane is the important facts for the state of two-lane hybrid traffic flow, and the accuracy of the simulation is improved in this article.

2012 ◽  
Vol 23 (02) ◽  
pp. 1250010 ◽  
Author(s):  
HUA-YAN SHANG ◽  
HAI-JUN HUANG ◽  
WEN-XIANG WU

In real traffic, the right-turn vehicles at intersections are not controlled by signal lights and their effects are neglected. In this paper, we develop a cellular automaton model to formulate the complicated turning behaviors of vehicles at intersections. Simulation results are quite in accord with the observation on the Beijing's 4th ring road. It is found that the right-turn vehicles may produce queue near the intersection, a short lane designed for right-turn has prominent effect in improving traffic flow, but, a too long lane for right-turn cannot further decrease the stop ratio as expected. These findings deepen our understanding on the effects of right-turn vehicles and may help the design and management of intersections.


1998 ◽  
Vol 1644 (1) ◽  
pp. 103-114 ◽  
Author(s):  
Yunlong Zhang ◽  
Larry E. Owen ◽  
James E. Clark

The purpose of this paper is to explore various traffic modeling aspects and theories that may overcome some of the limitations in existing microscopic simulation models. A multiregime microscopic traffic simulation approach has been formulated featuring realistic and comprehensive carfollowing and lane-changing logic. A prototype implementation of the multiregime approach was developed in C++ and extensively tested. The multiregime simulation results demonstrate the efficiency and validity of the proposed models for a broad range of traffic scenarios. The test and validation results indicate that the model and program outperformed traditional methods and other existing traffic simulation programs. The validity and efficiency of the model is attributed to the fact that the regimes were added to the model incrementally to reflect increasing agreement with real-world traffic flow. The techniques and corresponding models will be used to improve existing microscopic traffic simulation models and programs.


2012 ◽  
Vol 178-181 ◽  
pp. 1782-1785
Author(s):  
Ke Zhao Bai ◽  
Li Yang ◽  
Jian Huang ◽  
Rong Sen Zheng ◽  
Hua Kuang

Based on the NaSch model, an extended cellular automaton model is proposed to simulate traffic flow by considering the effects of visibility. Under the open boundary condition, the influences of the injection probability, disappearance probability and visibility are discussed. The simulation results show that the injection probability and disappearance probability within a certain range have an important effect on the flux, density and velocity. And traffic jams often occur in poor visibility areas, which can become a road bottleneck. Furthermore, in order to effectively decrease the occurrence of traffic jams, the injection probability and disappearance probability should be set up reasonably.


2004 ◽  
Vol 18 (17n19) ◽  
pp. 2703-2707 ◽  
Author(s):  
XIAO-BAI LI ◽  
RUI JIANG ◽  
QING-SONG WU

Traffic flow at an uncontrolled T-shaped intersection is modelled by a cellular automaton model. A priority probability of the through car is introduced. The phase diagram of the system and the effect of the turning car on the whole traffic situation are investigated. Our simulation results suggest that priority should be given to either through cars or to turning cars according to the ratio of the turning cars in order to obtain the optimization of the system.


2009 ◽  
Vol 20 (05) ◽  
pp. 711-719 ◽  
Author(s):  
C. Q. MEI ◽  
H. J. HUANG ◽  
T. Q. TANG

We present a modified cellular automaton model to study the traffic flow on a signal controlled ring road with velocity guidance. The velocity guidance is such a strategy that when vehicles approach the traffic light, suggested velocities are provided for avoiding the vehicles' sharp brakes in front of red light. Simulation results show that this strategy may significantly reduce the vehicles' stopping rate and the effect size is dependent upon the traffic density, the detector position, the signal's cycle time and the obedience rate of vehicles to the guidance.


2009 ◽  
Vol 20 (01) ◽  
pp. 59-69 ◽  
Author(s):  
NAJEM MOUSSA

In this paper, we propose a cellular automaton model for the evacuation of an emergency vehicle (EV) in highways. To facilitate the evacuation of the EV, some additional lane-changing rules (pull over of ordinary vehicles) are introduced in a two-lane cellular automata model for traffic flow in highway. We find that this pulling over of ordinary vehicles promotes a faster moving of the EV in traffic flow and minimize the EV's impact on the overall traffic.


2011 ◽  
Vol 22 (03) ◽  
pp. 271-281 ◽  
Author(s):  
SHINJI KUKIDA ◽  
JUN TANIMOTO ◽  
AYA HAGISHIMA

Many cellular automaton models (CA models) have been applied to analyze traffic flow. When analyzing multilane traffic flow, it is important how we define lane-changing rules. However, conventional models have used simple lane-changing rules that are dependent only on the distance from neighboring vehicles. We propose a new lane-changing rule considering velocity differences with neighboring vehicles; in addition, we embed the rules into a variant of the Nagel–Schreckenberg (NaSch) model, called the S-NFS model, by considering an open boundary condition. Using numerical simulations, we clarify the basic characteristics resulting from different assumptions with respect to lane changing.


Sign in / Sign up

Export Citation Format

Share Document