NN-Based Block Adaptive Backstepping Control of Induction Motor

2011 ◽  
Vol 268-270 ◽  
pp. 528-533
Author(s):  
Hai Yan Li ◽  
Yun An Hu

Based on the model of induction motors in field-oriented coordinates, a block adaptive backstepping method is used to design a controller for induction motor. The control law and parameter updating law are derived using Lyapunov theory, which guarantees the stability of the whole system. The proposed approach can track the rotor speed and flux reference signals under parameter and load uncertainties. Simulation results show the effectiveness of the proposed approach.

2011 ◽  
Vol 467-469 ◽  
pp. 1116-1121
Author(s):  
Hai Yan Li ◽  
Yun An Hu

For the model of induction motors(IMs) in field-oriented coordinates, a novel design method of controller is proposed, which combining block adaptive backstepping method with neural networks, introducing PD-type feedback, and making use of the diagonal feature of the unknown control matrix and the boundedness of its derivative. The control law and parameter updating law are derived using Lyapunov theory, which guarantees the stability of the whole system. The proposed approach can track the rotor speed and flux reference signals under parameter uncertainties. Simulation results show the effectiveness of the proposed approach.


Author(s):  
Tim Chen ◽  
Chih Ching Hung ◽  
Yu Ching Huang ◽  
John C.Y. Chen ◽  
Samiur Rahman ◽  
...  

In order to investigate and decide that the vehicle asymptotic vibration stability and improved comfort, the present paper deals with a fuzzy neural network (NN) evolved bat algorithm (EBA) backstepping adaptive controller based on grey signal predictors. The Lyapunov theory and backstepping method is utilized to appraise the math nonlinearity in the active vehicle suspension as well as acquire the final simulation control law in order to track the suitable signal. The Discrete Grey Model DGM (2,1) have been thus used to acquire prospect movement of the suspension system, so that the command controller can prove the convergence and the stability of the entire formula through the Lyapunov-like lemma. The controller overspreads the application range of mechanical elastic vehicle wheel (MEVW) as well as lays a favorable theoretic foundation in adapting to new wheels.


2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Rui-Qi Dong ◽  
Yu-Yao Wu ◽  
Ying Zhang ◽  
Ai-Guo Wu

In this paper, an observer-based adaptive backstepping attitude maneuver controller (briefly, OBABC) for flexible spacecraft is presented. First, an observer is constructed to estimate the flexible modal variables. Based on the proposed observer, a backstepping control law is presented for the case where the inertia matrix is known. Further, an adaptive law is developed to estimate the unknown parameters of the inertia matrix of the flexible spacecraft. By utilizing Lyapunov theory, the proposed OBABC law can guarantee the asymptotical convergence of the closed-loop system in the presence of the external disturbance, incorporating with the L2-gain performance criterion constraint. Simulation results show that the attitude maneuver can be achieved by the proposed observer-based adaptive backstepping attitude control law.


Author(s):  
Duc-Minh Nguyen ◽  
Van-Tiem Nguyen ◽  
Trong-Thang Nguyen

This article presents the sliding control method combined with the selfadjusting neural network to compensate for noise to improve the control system's quality for the two-wheel self-balancing robot. Firstly, the dynamic equations of the two-wheel self-balancing robot built by Euler–Lagrange is the basis for offering control laws with a neural network of noise compensation. After disturbance-compensating, the sliding mode controller is applied to control quickly the two-wheel self-balancing robot reached the desired position. The stability of the proposed system is proved based on the Lyapunov theory. Finally, the simulation results will confirm the effectiveness and correctness of the control method suggested by the authors.


Author(s):  
Anissa Hosseynia ◽  
Ramzi Trabelsi ◽  
Atif Iqbal ◽  
Med Faouzi Mimounia

This paper deals with the synthesis of a speed control strategy for a five-phase permanent magnet synchronous motor (PMSM) drive based on backstepping controller. The proposed control strategy considers the nonlinearities of the system in the control law. The stability of the backstepping control strategy is proved by the Lyapunov theory. Simulated results are provided to verify the feasibility of the backstepping control strategy.


2018 ◽  
Vol 25 (3) ◽  
pp. 571-580
Author(s):  
Shuyan Xia ◽  
Daolin Xu ◽  
Haicheng Zhang ◽  
Yousheng Wu

This paper presents a nonlinear control strategy to stabilize the response of a floating platform in waves. The floating platform consists of multiple floating modules connected in sequence with flexible connectors. A nonlinear dynamic model with a number of controllers is developed for the stability control of the chain-shape floating structure. The backstepping method in conjunction with the Lyapunov stability criteria is proposed to derive the control law for each of the control actuators where the actuator forces are limited with output saturation. The numerical experiments illustrate the feasibility and effectiveness of the control strategy in various conditions of heading waves. The performance of the control method is discussed, especially associated with the saturated output.


2014 ◽  
Vol 1070-1072 ◽  
pp. 1191-1195
Author(s):  
Ying Jun Wu

This paper analyzes the static characteristics of induction motor. The models, as well as typical parameters, of induction motors for stability analysis are introduced. The slip-voltage curve, active power-voltage curve, and reactive power-voltage curve are obtained for analyzing possible operating states. According to the number and the stability of operating states, induction motors are classified to three kinds.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Mahmood Pervaiz ◽  
Qudrat Khan ◽  
Aamer Iqbal Bhatti ◽  
Shahzad Ahmed Malik

We present a control strategy for nonlinear nontriangular uncertain systems. The proposed control method is a synergy between the dynamic adaptive backstepping (DAB) and integral sliding mode (ISM) and is referred to as DAB-ISMC. Our main objective is to find a recursive procedure to transform a nontriangular system into an implementable form that enables designing a control law which almost eliminates the reaching-phase. The proposed method further facilitates minimization of chattering which is believed to be a shortcoming of the sliding mode control. In this methodology, the ISM, as an integrated subsystem of DAB, is introduced at the final stage of backstepping. This strategy works very well to obtain a system that is robust against model imperfections, matching and unmatching uncertainties. The DAB-ISMC method is applied on a continuous stirred tank reactor (CSTR) and simulation results obtained on Matlab are found to be very promising.


Author(s):  
Xu-Zhi Lai ◽  
Chang-Zhong Pan ◽  
Min Wu ◽  
Simon X. Yang ◽  
Wei-Hua Cao

This paper presents a novel three-stage control strategy for the motion control of an underactuated three-link passive–active–active (PAA) manipulator. First, a nonlinear control law is designed to make the angle and angular velocity of the third link convergent to zero. Then, a swing-up control law is designed to increase the system energy and control the posture of the second link. Finally, an integrated method with linear control and nonlinear control is introduced to stabilize the manipulator at the straight-up position. The stability of the control system is guaranteed by Lyapunov theory and LaSalle’s invariance principle. Compared to other approaches, the proposed strategy innovatively introduces a preparatory stage to drive the third link to stretch-out toward the second link in a natural way, which makes the swing-up control easy and quick. Besides, the intergraded method ensures the manipulator moving into the balancing stage smoothly and easily. The effectiveness and efficiency of the control strategy are demonstrated by numerical simulations.


Author(s):  
Rizana Fauzi ◽  
Jumaddil Khair

The utilization of a 3 phase induction motor is increasingly developing, so research on speed regulation in 3 phase induction motors is also increasingly widely studied. This is because the use of 3 phase induction motors in the industry and especially hybrid vehicles are increasingly being developed. But there are some disadvantages of induction motors, one of which is the characteristics of non-linear parameters, especially rotor resistance which has varying values for different operating conditions, so it cannot maintain its speed constantly if there is a change in load. This, of course, can affect the performance of an induction motor. To get a constant speed and better system performance on load changes a controller is needed. This study aims to model direct-quadrate parameters (D-Q) using the Field Oriented Control (FOC) method based on the Proportional-Integral (PI) controller. With the d-q parameter controlled, the induction motor will be more stable, because the d-q parameter determines the stability of the change in torque and flux in the induction motor. Proportional-Integral (PI) control used is a classic control system that is easy because it does not need to look for a mathematical model of the system, but it remains effective because it has a fairly stable system response, by setting the best combination of proportional (Kp) constants and Integrator constants ( Ki). In the results of the implementation, it can be seen that the use of FOC can be used as an approach in terms of setting the speed of the induction motor, and with the use of the PI control can help the output response get better with a shorter response time to reach the reference value.


Sign in / Sign up

Export Citation Format

Share Document