RBF NN-Based Block PD-Type Backstepping Control of Induction Motor

2011 ◽  
Vol 467-469 ◽  
pp. 1116-1121
Author(s):  
Hai Yan Li ◽  
Yun An Hu

For the model of induction motors(IMs) in field-oriented coordinates, a novel design method of controller is proposed, which combining block adaptive backstepping method with neural networks, introducing PD-type feedback, and making use of the diagonal feature of the unknown control matrix and the boundedness of its derivative. The control law and parameter updating law are derived using Lyapunov theory, which guarantees the stability of the whole system. The proposed approach can track the rotor speed and flux reference signals under parameter uncertainties. Simulation results show the effectiveness of the proposed approach.

2011 ◽  
Vol 268-270 ◽  
pp. 528-533
Author(s):  
Hai Yan Li ◽  
Yun An Hu

Based on the model of induction motors in field-oriented coordinates, a block adaptive backstepping method is used to design a controller for induction motor. The control law and parameter updating law are derived using Lyapunov theory, which guarantees the stability of the whole system. The proposed approach can track the rotor speed and flux reference signals under parameter and load uncertainties. Simulation results show the effectiveness of the proposed approach.


Author(s):  
Tim Chen ◽  
Chih Ching Hung ◽  
Yu Ching Huang ◽  
John C.Y. Chen ◽  
Samiur Rahman ◽  
...  

In order to investigate and decide that the vehicle asymptotic vibration stability and improved comfort, the present paper deals with a fuzzy neural network (NN) evolved bat algorithm (EBA) backstepping adaptive controller based on grey signal predictors. The Lyapunov theory and backstepping method is utilized to appraise the math nonlinearity in the active vehicle suspension as well as acquire the final simulation control law in order to track the suitable signal. The Discrete Grey Model DGM (2,1) have been thus used to acquire prospect movement of the suspension system, so that the command controller can prove the convergence and the stability of the entire formula through the Lyapunov-like lemma. The controller overspreads the application range of mechanical elastic vehicle wheel (MEVW) as well as lays a favorable theoretic foundation in adapting to new wheels.


2019 ◽  
Vol 291 ◽  
pp. 01001
Author(s):  
Yahui Li ◽  
Feng Gao ◽  
Franco Bernelli-Zazzera ◽  
Zeyou Tong ◽  
Fugui Li ◽  
...  

Adaptive backstepping methodology is a powerful tool for nonlinear systems, especially for strict-feedback ones, but its robustness still needs improvements. In this paper, combined with sliding mode control (SMC), a new backstepping design method is proposed to guarantee the robustness. In this method, based on the novel combining method, the auxiliary controller is introduced only in the final step of the real controller, unlike traditional methods, which usually all include an auxiliary controller in every de-signing step to guarantee the robustness of the closed-loop systems. The novel combing methods can avoid calculating multiple and high-order derivatives of the auxiliary controllers in the intermediate steps, low-ering the computational burden in evaluating the controller. The effectiveness of the proposed approach is illustrated from simulation results.


2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Rui-Qi Dong ◽  
Yu-Yao Wu ◽  
Ying Zhang ◽  
Ai-Guo Wu

In this paper, an observer-based adaptive backstepping attitude maneuver controller (briefly, OBABC) for flexible spacecraft is presented. First, an observer is constructed to estimate the flexible modal variables. Based on the proposed observer, a backstepping control law is presented for the case where the inertia matrix is known. Further, an adaptive law is developed to estimate the unknown parameters of the inertia matrix of the flexible spacecraft. By utilizing Lyapunov theory, the proposed OBABC law can guarantee the asymptotical convergence of the closed-loop system in the presence of the external disturbance, incorporating with the L2-gain performance criterion constraint. Simulation results show that the attitude maneuver can be achieved by the proposed observer-based adaptive backstepping attitude control law.


Author(s):  
Yu LI ◽  
Xiaoxiong LIU ◽  
Ruichen MING ◽  
Shaoshan SUN ◽  
Weiguo ZHANG

Nonlinear Dynamic Inversion(NDI) control has excellent rapidity and decoupling ability, unfortunately it lacks the essential robustness to disturbance. From the perspective of enhancing the robustness, an adaptive NDI method based on L1 adaptive structure is proposed. The L1 adaptive structure is introduced into the NDI control to enhance its robustness, which also guarantees the stability and expected dynamic performance of the system suffering from the disturbance influence. Secondly, the flight control law of the advanced aircraft is designed based on the present method to improve the robustness and fault tolerance of the flight control system. Finally, the effectiveness of the flight control law based on the present approach is verified under the fault disturbance. The results showed that the flight control law based on L1 adaptive NDI has excellent dynamic performance and strong robustness to parameter uncertainties and disturbances.


Author(s):  
Anissa Hosseynia ◽  
Ramzi Trabelsi ◽  
Atif Iqbal ◽  
Med Faouzi Mimounia

This paper deals with the synthesis of a speed control strategy for a five-phase permanent magnet synchronous motor (PMSM) drive based on backstepping controller. The proposed control strategy considers the nonlinearities of the system in the control law. The stability of the backstepping control strategy is proved by the Lyapunov theory. Simulated results are provided to verify the feasibility of the backstepping control strategy.


2018 ◽  
Vol 25 (3) ◽  
pp. 571-580
Author(s):  
Shuyan Xia ◽  
Daolin Xu ◽  
Haicheng Zhang ◽  
Yousheng Wu

This paper presents a nonlinear control strategy to stabilize the response of a floating platform in waves. The floating platform consists of multiple floating modules connected in sequence with flexible connectors. A nonlinear dynamic model with a number of controllers is developed for the stability control of the chain-shape floating structure. The backstepping method in conjunction with the Lyapunov stability criteria is proposed to derive the control law for each of the control actuators where the actuator forces are limited with output saturation. The numerical experiments illustrate the feasibility and effectiveness of the control strategy in various conditions of heading waves. The performance of the control method is discussed, especially associated with the saturated output.


Author(s):  
Xu-Zhi Lai ◽  
Chang-Zhong Pan ◽  
Min Wu ◽  
Simon X. Yang ◽  
Wei-Hua Cao

This paper presents a novel three-stage control strategy for the motion control of an underactuated three-link passive–active–active (PAA) manipulator. First, a nonlinear control law is designed to make the angle and angular velocity of the third link convergent to zero. Then, a swing-up control law is designed to increase the system energy and control the posture of the second link. Finally, an integrated method with linear control and nonlinear control is introduced to stabilize the manipulator at the straight-up position. The stability of the control system is guaranteed by Lyapunov theory and LaSalle’s invariance principle. Compared to other approaches, the proposed strategy innovatively introduces a preparatory stage to drive the third link to stretch-out toward the second link in a natural way, which makes the swing-up control easy and quick. Besides, the intergraded method ensures the manipulator moving into the balancing stage smoothly and easily. The effectiveness and efficiency of the control strategy are demonstrated by numerical simulations.


Author(s):  
Shiqian Liu ◽  
James F Whidborne

This paper presents the fault tolerant control (FTC) of an unmanned airship with multiple vectored thrusters in the presence of model parameter uncertainties and unknown wind disturbances. A fault tolerant control based on constrained adaptive backstepping (CAB) approach, combined with a radial basis function neural network (RBFNN) approximation, is proposed for the airship with thruster faults. A wind observer is designed to estimate the bounded wind disturbances. An adaptive fault estimator is proposed to estimate the unknown actuator faults. A weighted pseudo inverse based control allocation is incorporated to reconstruct and optimize the practical control inputs of the failed airship under constraints of actuator saturation. Rigorous stability analysis shows that trajectory tracking errors of the airship position and attitude converge to the desired set through Lyapunov theory. Numerical simulations demonstrate the fault tolerant trajectory tracking capability of the proposed NN-CAB controller under the actuator faults, even in the presence of aerodynamic coefficient uncertainties, and unknown wind disturbances.


2018 ◽  
Vol 160 ◽  
pp. 06003
Author(s):  
Baofang Wang ◽  
Chen Qian ◽  
Qingwei Chen

A dynamics controller design method based on characteristic model is proposed for the formation control problem of car-like mobile robots. Only kinematics controller is not enough for some cases such as the environment is rugged, and the dynamics parameters of the robot are time-varying. Simulation results show that the proposed method can improve the responding speed of the mobile robots and maintain high formation accuracy. First, we obtain the kinematic error state equations according to the leader-follower method. A kinematics controller is designed and the stability is proved by Lyapunov theory. Then the characteristic model of the dynamics inner loop is established. A sliding mode controller is designed based on the second order discrete model, and the stability of the closed-loop system is analyzed. Finally, simulations are designed in MATLAB and Microsoft Robotics Developer Studio 4 (MRDS) to verify the effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document