The Effect of Rare Earth Modification on the Structure and Catalytic Performance of SO42-/ZrO2 Solid Acid Catalysts

2011 ◽  
Vol 287-290 ◽  
pp. 1375-1378
Author(s):  
Ying Chen ◽  
Bao Hui Wang ◽  
Xue Sun ◽  
Hui Li

Rare earth modified SO2-4/ZrO2 solid acid catalysts were prepared by coprecipitation and impregnation methods respectively. The properties of the samples were characterized by XRD (X-ray diffraction), FT-IR (Fourier transform infrared spectroscopy). And their catalytic performances were evaluated and investigated by transesterification of waste oil with methanol. The results showed that the catalyst containing 4% Ce and calcined at 550°C displayed the highest production rate and the better reuse ability than the others. 63.5% yield of fatty acid methyl ester was achieved. An analysis of XRD patterns reveal that the incorporation of rare earth into tetragonal zirconia stabilizes the compound, and the calcination at 550°C increases the reactivity of the catalyst by producing a greater fraction of active tetragonal zirconia. It can be seen from the FT-IR spectra that superacids structures are formed in the catalysts and the acidity is strengthened remarkably and the activated centre of the catalyst were increasesed.

2012 ◽  
Vol 509 ◽  
pp. 321-327 ◽  
Author(s):  
Zi Li Liu ◽  
Cui Xia Xu ◽  
Qian Wen Dai ◽  
Chao Xiang ◽  
Jian Jie Zhang

Supported H3PW12O40 (HPW) and supported Cesium-Substituted dodecatungsto-phosphate are eco-friendly solid acid catalysts. A series of different loading H3PW12O40/SiO2 and HPW/diatomite were prepared by a typical incipient wetness impregnation of methanol, meanwhile SiO2 and diatomite supported Cs-salt catalysts were prepared via two-step impregnating method. The catalysts were investigated by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). The results indicate that the Keggin structure of HPW is intact in the SiO2-supported HPW and SiO2-supported CsHPW. HPW and CsHPW are highly dispersed in the SiO2 at the low loading, while the loading is more than 40% the catalyst grains increase and gather on the surface of the carrier. What's more, diatomite is not a suitable support. HPW and CsHPW have better distribution in the SiO2 than in the diatomite. The activity of catalyst was tested in probe experiment of the alkylation of thiopene (TH) with 1-hexene.


RSC Advances ◽  
2016 ◽  
Vol 6 (97) ◽  
pp. 95252-95262 ◽  
Author(s):  
Bolla Govinda Rao ◽  
Putla Sudarsanam ◽  
Baithy Mallesham ◽  
Benjaram M. Reddy

Nanoscale CeO2–MoO3/SiO2 solid acid shows an outstanding catalytic performance in the oxidative coupling of amines under industrially-favourable conditions.


2020 ◽  
Vol 44 (30) ◽  
pp. 12897-12908
Author(s):  
Aman Mahajan ◽  
Princy Gupta

Taking into account the excellent catalytic performance of halloysite nanotubes, the main focus of this review article is to unveil the research on halloysite nanotubes for the preparation of solid acids and their applications in acid catalysis.


2019 ◽  
Vol 9 (8) ◽  
pp. 1518
Author(s):  
Ping Lu ◽  
Kebing Wang ◽  
Juhui Gong

Salix carboniferous solid acid catalysts were successfully obtained via one-step carbonization and sulfonation of Salix psammophila in the presence of concentrated sulfuric acid, which was then used in the esterification reaction between oleic acid and methanol to prepare the biodiesel. The esterification rate of the catalyst obtained from the reaction indicated the catalytic performance of the catalyst. Afterwards, the recycling performance of the catalyst was optimized and characterized based on Fourier transform infrared spectrometer. The catalyst performance was examined and optimized through the response surface method, and the catalyst was determined and characterized based on scanning electron microscope (SEM), elemental analysis, thermogravimetric analysis, and infrared analysis. The results suggested that the optimal preparation conditions were as follows: reaction temperature of 125 °C, reaction time of 102 min, solid–liquid ratio of 17 g/100 mL, standing time of 30 min, and the highest conversion level of 94.15%.


Author(s):  
Daofeng Huang ◽  
Siyue Chen ◽  
Sicong Ma ◽  
Xin Chen ◽  
Yuanhang Ren ◽  
...  

Sulfated zirconia (SZ) plays an important role in solid acid catalysts. To understand the origin of the super acidity over the surface of sulfated zirconia, pure monoclinic and tetragonal phase...


Catalysts ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 213 ◽  
Author(s):  
Zhaozhou Wei ◽  
Deyuan Xiong ◽  
Pengzhi Duan ◽  
Shilei Ding ◽  
Yuanlin Li ◽  
...  

Carbon-based solid acid catalysts were prepared using rice straw (RS) waste, and the effects of carbonization temperature and sulfonation temperature on the catalytic activity were investigated. The properties of the catalysts were characterized using thermo gravimetric (TG), scanning electron microscope (SEM), Brunauer–Emmet–Teller (BET), Fourier transform infrared spectroscopy (FT-IR), temperature-programmed desorption (TPD), and X-ray photoelectron spectroscopy (XPS), and their activities were investigated through the hydration of α-pinene. The conversion of α-pinene and the selectivity of α-terpineol reached 67.60% and 57.07% at 80 °C and atmospheric pressure in 24 h, respectively. The high catalytic capacity of the catalyst is attributed to the high acid site density and high porosity of the catalyst. TPD analysis and FT-IR spectroscopy showed that the catalyst produced by low-temperature carbonization at 300 °C followed by low-temperature sulfonation at 80 °C had abundant strong acid sites (0.82 mmol/g), which can effectively inhibit the side reactions of hydrated α-pinene. The total acidity reached 2.87 mmol/g. N2-physisorption analysis clearly indicated that the obtained catalysts were mesopore-predominant materials, and the SBET and VTotal of catalysts reached 420.9 m2/g and 4.048 cm3/g, respectively. Preparation of the catalyst involves low energy consumption, and its cheap raw materials make the whole process simple, economical, and environmentally friendly.


2012 ◽  
Vol 116 (40) ◽  
pp. 21308-21317 ◽  
Author(s):  
C. Lucarelli ◽  
A. Giugni ◽  
G. Moroso ◽  
A. Vaccari

RSC Advances ◽  
2019 ◽  
Vol 9 (30) ◽  
pp. 16919-16928 ◽  
Author(s):  
Wenzhi Li ◽  
Mingxue Su ◽  
Tao Yang ◽  
Tingwei Zhang ◽  
Qiaozhi Ma ◽  
...  

Liquid fuel intermediates can be produced via aldol condensation reactions through furan aldehydes and ketones driven from biomass.


Sign in / Sign up

Export Citation Format

Share Document