Transesterification of Cotton-Seed Oil by Heterogeneous Solid Super Base KF/MgO Catalyst

2011 ◽  
Vol 287-290 ◽  
pp. 1496-1504
Author(s):  
Yun Long Fan ◽  
Wan Quan Zhang ◽  
Liu Yang ◽  
Dong Lin Hu ◽  
Li Xin Zhu ◽  
...  

An environmentally benign process was developed for the production of biodiesel from cotton-seed oil using KF loaded with MgO as a heterogeneous solid super base catalyst. The 20 wt% KF/MgO, after desiccated at 120 oC for 4 h, was found to be the optimum catalyst. Hammett indicator method, XRD, SEM and IR were employed for the catalyst characterization. The results showed the activity of the catalysts was correlated with their basicity. The influence of various reaction variables on the conversion, such as the molar ratio of methanol to cotton-seed oil, the catalyst amount, the reaction time and temperature were also discussed. When the transesterification reaction was carried out at reflux of methanol (65 oC), with a molar ratio of methanol to cotton-seed oil 12 : 1, a reaction time 2.5 h and a catalyst amount 2.5 wt%, the highest conversion of cotton-seed oil reached 99.14%.

REAKTOR ◽  
2018 ◽  
Vol 18 (1) ◽  
pp. 27 ◽  
Author(s):  
Andi Suryanto ◽  
Zakir Sabara, HW ◽  
Andi Artiningsih ◽  
Hardi Ismail

Biodiesel is a renewable, non-toxic, environmentally friendly fuel made from vegetable oils through a transesterification reaction with methanol. During this time the manufacture of biodiesel takes a long time, which can be overcome with microwave heating. The use of microwave can decrease the reaction time and the amount of catalyst. The purpose of this study was to study the utilization of microwave as a heater in the transesterification reaction of cotton seed oil with the addition of NaOH catalyst 0.25, 0.5, 0.75 and 1% (w/w) with 100 watts microwave power and a reaction time of 15 minutes. Conversion of biodiesel from cotton seed oil with the NaOH catalyst concentrations 0.5% (w/w), 5 minutes, molar ratio of 1: 12 with a microwave power of 400 watts was 99.11%. The results of the analysis of several parameters on biodiesel products show that they have met the specifications based on Indonesian National Standard (SNI-04-7182-2006). Keyword: biodiesel, transesterification, cotton seed oil, microwave.


1880 ◽  
Vol 10 (243supp) ◽  
pp. 3874-3874
Author(s):  
Benjamin Nickels

Planta Medica ◽  
2015 ◽  
Vol 81 (05) ◽  
Author(s):  
V Shulaev ◽  
MD Jones ◽  
D Sturtevant ◽  
PJ Horn ◽  
J Crossley ◽  
...  

2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Mohammed Takase ◽  
Paul Kwame Essandoh ◽  
Rogers Kipkoech

AbstractSodium molybdate (Na2MoO4) has been synthesized and investigated as a heterogeneous solid catalyst for biodiesel from Camelina sativa seed oil. Transesterification reactions occurred under atmospheric conditions with relatively, low temperature short reaction time and normal pressure. The prepared catalyst was characterised by means of SEM, TGA, UV, XRD and FTIR. The properties of the biodiesel were compared with international standards. The transesterification reaction was very efficient with the optimum yield higher than 95% at methanol to oil molar ratio of 17:1, catalyst amount of 6%, reaction temperature of 60 °C and reaction time of 2.5 h. The molybdate complex had a high Lewis acidity and most certainly act as alcohol O–H bond leading to a transient species which has high nucleophilic character. The catalyst was easily recovered and after being washed for three times, showed capacity of recyclability for another catalytic reaction of five cycles with similar activity. The properties of the biodiesel were comparable to international standards.


Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2562 ◽  
Author(s):  
Chia-Hung Su ◽  
Hoang Nguyen ◽  
Uyen Pham ◽  
My Nguyen ◽  
Horng-Yi Juan

This study investigated the optimal reaction conditions for biodiesel production from soursop (Annona muricata) seeds. A high oil yield of 29.6% (w/w) could be obtained from soursop seeds. Oil extracted from soursop seeds was then converted into biodiesel through two-step transesterification process. A highest biodiesel yield of 97.02% was achieved under optimal acid-catalyzed esterification conditions (temperature: 65 °C, 1% H2SO4, reaction time: 90 min, and a methanol:oil molar ratio: 10:1) and optimal alkali-catalyzed transesterification conditions (temperature: 65 °C, reaction time: 30 min, 0.6% NaOH, and a methanol:oil molar ratio: 8:1). The properties of soursop biodiesel were determined and most were found to meet the European standard EN 14214 and American Society for Testing and Materials standard D6751. This study suggests that soursop seed oil is a promising biodiesel feedstock and that soursop biodiesel is a viable alternative to petrodiesel.


2013 ◽  
Vol 91 (1) ◽  
pp. 143-150 ◽  
Author(s):  
Letao Zhang ◽  
Yanping Luo ◽  
Zhenshan Hou ◽  
Zhenhong He ◽  
Wumanjiang Eli

Sign in / Sign up

Export Citation Format

Share Document