Experiment and Numerical Simulation Study on the Viscosity Impact of Turbine Flowmeter's Performance

2011 ◽  
Vol 301-303 ◽  
pp. 1283-1288 ◽  
Author(s):  
Jian Liang Zhao ◽  
Li Jun Sun ◽  
Tao Zhang ◽  
Lei Cao

Turbine flow meter is a very significant measuring instrument. As an important flow meter, turbine meter is widely used in many fields for its high accuracy, good repeatability, small size and light weight. However, with the viscosity of the measurement fluid increasing, the measured variation of the linearity becomes bad, which makes great influence on the meter factor. In this paper, the experiment on the viscosity impact of turbine flowmeter's performance was completed by adjusting the temperature of the mixture of diesel and lubricants, i.e. changing medium viscosity. And the methods of computational fluid dynamics (CFD) numerical simulate were used to research the accuracy of the turbine flow meter in the same conditions. According to the comparison of the two methods, the influence of the turbine flowmeter’s precision measuring fluids with different viscosities was analyzed. It provides a data basement for improving the measurement accuracy of a certain viscosity fluid in the future.

Author(s):  
Gang Chen ◽  
Yulin Wu ◽  
Guangjun Cao ◽  
Mingjie Li ◽  
Suhong Fu

The turbine flow meter is widely used in the flow rate measuring for its high accuracy and good repeatability. The flow rate will be calculated based on its meter factor, which is the most important factor of the turbine flow meter. The meter factor means pulses or revolution of the impeller per unit volume, and it can only be got from the calibration experiment. At the given flow rate, the driving torque on the impeller is equal to the drag torque, as many paper have pointed out. Based on the torque balancing equations, unsteady numerical simulation is carried out with RNG turbulence model and UDFs (User Defined Functions) in Fluent Code. The meter factor under different flow rate is calculated with the unsteady simulation. The prediction results based on the numerical simulation showed the same trends as the calibration experiment. At the most flow rate, the meter factor keeps constant, but at the lower flow rate, the meter factor higher than the constant. Because of neglecting the bearing friction drag in the process, the meter factor by numerical simulation is larger than experiment.


2017 ◽  
Vol 77 (3) ◽  
pp. 647-654 ◽  
Author(s):  
Haoming Yang ◽  
David Z. Zhu ◽  
Yanchen Liu

Abstract Determining the proper installation location of flow meters is important for accurate measurement of discharge in sewer systems. In this study, flow field and flow regimes in two types of manholes under surcharged flow were investigated using a commercial computational fluid dynamics (CFD) code. The error in measuring the flow discharge using a Doppler flow meter (based on the velocity in a Doppler beam) was then estimated. The values of the corrective coefficient were obtained for the Doppler flow meter at different locations under various conditions. Suggestions for selecting installation positions are provided.


Author(s):  
Carl Tegtmeier ◽  
Phuriwat Anusonti-Inthra ◽  
James Winchester

Author(s):  
Marco Colombo ◽  
Antonio Cammi ◽  
Marco E. Ricotti

This paper deals with a comprehensive study of fully developed single-phase turbulent flow and pressure drops in helically coiled channels. To the aim, experimental pressure drops were measured in an experimental campaign conducted at SIET labs, in Piacenza, Italy, in a test facility simulating the Steam Generator (SG) of a Generation III+ integral reactor. Very good agreement is found between data and some of the most common correlations available in literature. Also more data available in literature are considered for comparison. Experimental results are used to assess the results of Computational Fluid Dynamics (CFD) simulations. By means of the commercial CFD package FLUENT, different turbulence models are tested, in particular the Standard, RNG and realizable k-ε models, Shear Stress Transport (SST) k-ω model and second order Reynolds Stress Model (RSM). Moreover, particular attention is placed on the different types of wall functions utilized through the simulations, since they seem to have a great influence on the calculated results. The results aim to be a contribution to the assessment of the capability of turbulence models to simulate fully developed turbulent flow and pressure drops in helical geometry.


2019 ◽  
Vol 8 (3) ◽  
pp. 777-788
Author(s):  
Salami Ifedapo Abdullahi ◽  
Mohamed Hadi Habaebi ◽  
Noreha Abd Malik

Flow sensors are very essential in many aspects of our daily lives. Many of the industrial processes need a very consistent flow sensor to monitor and check for irregularities in their system. Therefore, flow sensor is an important tool for advanced operation in industrial environment. In this paper, the design and development of a 3D fabricated flow sensor was carried out using SolidWork 3D CAD. SolidWork Flow Simulation was used to model the effect the turbine flow sensor would have on a constant flowing water while MATLAB Simulink flow graph was created to visualize the effect of turbine flow sensor response with voltage input. Afterwards, the design was 3D printed using UP Plus 2 3D printer. The experimentation involved selection of sensors, coding to control the turbine flow sensor and automatic data logging and storage. During the design phase, the sensors and actuators were assembled using locally sourced material. Subsequently, under controlled laboratory environment, the turbine flow sensor was tested using a DC motor which was programmed to control the revolution per minute(rpm) of the turbine flow sensor. The rpm and velocity of the turbine flow meter was measured and stored in a database via Microsoft Excel using Cool Term Software. A total number of 517 readings were analysed to evaluate the performance of the turbine flow sensor. The result shows that the turbine flow meter is responsive to the motor input voltage and yielded accurate measurement of rpm and velocity of turbine flow meter.


2003 ◽  
Vol 12 (6) ◽  
pp. 937-946 ◽  
Author(s):  
N. Svedin ◽  
E. Stemme ◽  
G. Stemme

Author(s):  
Kevin Venne ◽  
Laurent Mydlarski ◽  
Federico Torriano ◽  
Mathieu Kirouac ◽  
Jean-Philippe Charest-Fournier ◽  
...  

To ensure the proper operation of hydroelectric generators, their cooling must be well understood. However, the airflow within such machines is difficult to characterize, and although Computational Fluid Dynamics (CFD) can be a reliable engineering tool, its application to the field of hydroelectric generators is quite recent and has certain limitations which are, in part, due to geometrical and flow complexities, including the coexistence of moving (rotor) and stationary (stator) components. For this reason, experimental measurements are required to validate CFD simulations of such complex flows. Of particular interest is the quantification of the flow within the rotor rim ducts, since it is directly responsible for cooling the poles (one of the most critical components of a hydroelectric generator). Thus, to measure the flow therein, an anemometer was designed. The anemometer had to be accurate, durable, cost-effective, easy to install, and able to withstand the extreme conditions found in hydroelectric generators (temperatures of 45°C, centrifugal forces of 300 g, etc.). In this paper, a thermal mass flow meter and a method for validating its performance, using hot-wire anemometry and a static model of a rotor rim, are described. Preliminary tests demonstrate that the thermal mass flow meter is capable of i) measuring the mass flow rate in the rotor rim ducts with an accuracy of approximately 10%, ii) fitting inside small rectangular ducts (12.2 mm by 51 mm), and iii) resisting forces up to 300 g.


Author(s):  
Zhanfei Zhang ◽  
Wenhu Wang ◽  
Ruisong Jiang ◽  
Chengcheng Jin ◽  
Xiaoxiang Zhu ◽  
...  

Abstract The geometric precision of the film cooling hole has a great influence on the cooling efficiency and fatigue life of the turbine blade. In the paper, the processing of film cooling holes on DD6 single crystal superalloy by picosecond laser is investigated. The pulse laser at pulse duration of 2.1ps, the wavelength of 1030 nm and the repetition frequency of 75 kHz are selected to study the pulse energy, scanning speed, defocus and scanning width on the geometric precision of the film cooling hole. After drilling, the three-dimensional coordinates of the entrance and exit plane of the film cooling holes are obtained by using the three-dimensional surface measuring instrument. The diameter, roundness and taper of the film cooling holes are calculated by extracting and processing the coordinate points of the contour around the microholes. The experimental results show that defocusing has the greatest influence on the taper and roundness of film cooling holes. Negative defocusing can produce severe plasma shielding, which makes the exit roundness and taper larger. With larger pulses, positive defocusing and larger scanning width, smaller roundness and taper can be produced.


Sign in / Sign up

Export Citation Format

Share Document