Optimal Design of a Pin-Fin Heat Sink Using a Surrogate-Assisted Multiobjective Evolutionary Algorithm

2011 ◽  
Vol 308-310 ◽  
pp. 1122-1128
Author(s):  
Siwadol Kanyakam ◽  
Sujin Bureerat

In this work, performance enhancement of a multiobjective evolutionary algorithm (MOEA) by integrating a surrogate model to the design process is presented. The MOEA used in this work is multiobjective population-based incremental learning (PBIL). The bi-objective design problem of a pin-fin heat sink (PFHS) is posed to minimize junction temperature and fan pumping power while meeting design constraints. A Kriging (KRG) model is used for improving the performance of PBIL. The training points for constructing a surrogate KRG model are sampled by means of a Latin hypercube sampling (LHS) technique. It is shown that hybridization of PBIL and KRG can enhance the search performance of PBIL.

2000 ◽  
Author(s):  
Jenn-Jiang Hwang ◽  
Chung-Hsing Chao

Abstract This study reported thermal performance of a thermally enhanced plastic ball grid array (PBGA), namely T2-BGA™ which incorporates a heat slug in package, with a foam-metal heat sink on the top of this package. Experimental measurement of junction-to-ambient thermal resistance is performed in accordance with the SEMI standards of G38-0996 and G42-0996 for thermal characterization of BGA packages. Allowable power dissipation is subject to the constraint of junction temperature (Tj) at 95°C and ambient temperature (Ta) in chassis at 35 °C under free and forced air (0 ∼ 3 m/s) conditions. Based on this constraint, allowable power dissipation of a regular PBGA with a commercial pin fin heat sink under free and 3 m/s forced air is 5.45 W and 9.17 W compared with those of T2-BGA with a foam heat sink of 6.80 W and 19.6 W respectively. This results show that T2-BGA™ with a foam heat sink offers enormous potential to high power package applications.


2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Siwadol Kanyakam ◽  
Sujin Bureerat

This paper presents the comparative performance of several surrogate-assisted multiobjective evolutionary algorithms (MOEAs) for geometrical design of a pin-fin heat sink (PFHS). The surrogate-assisted MOEAs are achieved by integrating multiobjective population-based incremental learning (PBIL) with a quadratic response surface model (QRS), a radial-basis function (RBF) interpolation technique, and a Kriging (KRG) or Gaussian process model. The mixed integer/continuous multiobjective design problem of PFHS with the objective to minimise junction temperature and fan pumping power simultaneously is posed. The optimum results obtained from using the original multiobjective PBIL and the three versions of hybrid PBIL are compared. It is shown that the hybrid PBIL using KRG is the best performer. The hybrid PBILs require less number of function evaluations to surpass the original PBIL.


2014 ◽  
Vol 1082 ◽  
pp. 332-335
Author(s):  
Vithyacharan Retnasamy ◽  
Zaliman Sauli ◽  
Hussin Kamarudin ◽  
Muammar Mohamad Isa ◽  
Gan Meng Kuan

In this paper, the heat distribution for single chip high power LED package attached with varied heat sink fin shapes were analyzed through simulation. The main focus of this study was to scrutinize the fluctuation of junction temperature with different shapes of heat sink fin designs. The simulation was done using Ansys version 11. The single chip LED was loaded with input power of 0.5 W and 1 W . Simulation was done at ambient temperature of 25°C under three convection coefficient of 5, 10 and 15 W/m2.oC respectively. The obtained results showed that the LED package with pyramid pin fin heat sink has demonstrated a better thermal performance compared to the LED package with cylindrical pin fin heat sink.


2012 ◽  
Vol 134 (2) ◽  
Author(s):  
Siwadol Kanyakam ◽  
Sujin Bureerat

This paper presents the use of multiobjective evolutionary algorithms for the optimal geometrical design of a pin-fin heat sink. The multiobjective design problem is posed to minimize two conflicting objectives: the junction temperature and the fan pumping power of the heat sink. The design variables are mixed integer/continuous. The encoding/decoding process for this mixed integer/continuous design variables is detailed. The multiobjective optimizers employed to solve the design problem are population-based incremental learning, strength Pareto evolutionary algorithm, particles swarm optimization, and archived multiobjective simulated annealing. The approximate Pareto fronts obtained from using the various optimizers are compared based upon the hypervolume and generational distance indicators. From the results, population-based incremental learning (PBIL) outperforms the others. The new design approach is said to be superior to a classical design approach. It is also illustrated that the proposed multiobjective design process leads to better design compared to the current commercial pin-fin heat sinks.


Sign in / Sign up

Export Citation Format

Share Document