Cooling of Thermal Enhanced BGA Package Using Foam Metal Heat Sinks

2000 ◽  
Author(s):  
Jenn-Jiang Hwang ◽  
Chung-Hsing Chao

Abstract This study reported thermal performance of a thermally enhanced plastic ball grid array (PBGA), namely T2-BGA™ which incorporates a heat slug in package, with a foam-metal heat sink on the top of this package. Experimental measurement of junction-to-ambient thermal resistance is performed in accordance with the SEMI standards of G38-0996 and G42-0996 for thermal characterization of BGA packages. Allowable power dissipation is subject to the constraint of junction temperature (Tj) at 95°C and ambient temperature (Ta) in chassis at 35 °C under free and forced air (0 ∼ 3 m/s) conditions. Based on this constraint, allowable power dissipation of a regular PBGA with a commercial pin fin heat sink under free and 3 m/s forced air is 5.45 W and 9.17 W compared with those of T2-BGA with a foam heat sink of 6.80 W and 19.6 W respectively. This results show that T2-BGA™ with a foam heat sink offers enormous potential to high power package applications.

Author(s):  
H. Y. Zhang ◽  
Xiao Yan ◽  
W. H. Zhu ◽  
Leon Lin

2.5-D package with through silicon vias (TSVs) on interposer has been envisioned as the most viable way in heterogeneous integration. In this work, several design approaches are considered in the thermal analysis and enhancements of a 2.5-D package with multi chips on through silicon interposer (TSI), which include overmolding materials, metal slug, lid attachment, pin fin heat sink and fan-driven heat sink cooling. The analysis models consist of two dummy flip chips on a silicon interposer to represent the logic die and memory die, respectively. Package submodels, especially the TSV ones, are analyzed with good modeling accuracy. Package thermal modeling indicates that the thermal conductivity of the epoxy overmolding has minimal effect on the thermal performance of copper slug package. Lid attachment further enhances the thermal performance through peripheral substrate attachment. Both designs largely rely on thermally conductive PCB (4L) to maximize power dissipation. Pin-fin heat sink, made of aluminum, can be mounted on the package top to further minimize thermal resistance and extend the power dissipation beyond 10W. For high power application, fan cooled heat sink is used to reduce excessive heat. Copper based aluminum heat sink can remove the heat of 120W from the bare-die package. Self heating due to high current density through the TSV is analyzed. The proposed analytical expression gives good prediction on the local TSV hot spot. It is demonstrated that a distributed TSV network design provides lower temperature rise, which shall have lower risk of failures and is preferred in practice.


2014 ◽  
Vol 1082 ◽  
pp. 332-335
Author(s):  
Vithyacharan Retnasamy ◽  
Zaliman Sauli ◽  
Hussin Kamarudin ◽  
Muammar Mohamad Isa ◽  
Gan Meng Kuan

In this paper, the heat distribution for single chip high power LED package attached with varied heat sink fin shapes were analyzed through simulation. The main focus of this study was to scrutinize the fluctuation of junction temperature with different shapes of heat sink fin designs. The simulation was done using Ansys version 11. The single chip LED was loaded with input power of 0.5 W and 1 W . Simulation was done at ambient temperature of 25°C under three convection coefficient of 5, 10 and 15 W/m2.oC respectively. The obtained results showed that the LED package with pyramid pin fin heat sink has demonstrated a better thermal performance compared to the LED package with cylindrical pin fin heat sink.


Smart Science ◽  
2015 ◽  
Vol 3 (1) ◽  
pp. 1-6 ◽  
Author(s):  
Tzer-Ming Jeng ◽  
Sheng-Chung Tzeng ◽  
Chi-Huang Liu
Keyword(s):  
Pin Fin ◽  

Author(s):  
Aalok Trivedi ◽  
Nikhil Lakhkar ◽  
Madhusudhan Iyengar ◽  
Michael Ellsworth ◽  
Roger Schmidt ◽  
...  

With the continuing industry trends towards smaller, faster and higher power devices, thermal management continues to be extremely important in the development of electronics. In this era of high heat fluxes, air cooling still remains the primary cooling solution in desktops mainly due to its cost. The primary goal of a good thermal design is to ensure that the chip can function at its rated frequency or speed while maintaining the junction temperature within the specified limit. The first and foremost step in measurement of thermal resistance and hence thermal characterization is accurate determination of junction temperature. Use of heat sinks as a thermal solution is well documented in the literature. Previously, the liquid cooled cold plate tester was studied using a different approach and it was concluded that the uncertainty in heat transfer coefficient was within 8% with errors in appropriate parameters, this result was supported by detailed uncertainty analysis based on Monte-Carlo simulations. However, in that study the tester was tested computationally. In this paper, testing and characterization of a heat sink tester is presented. Heat sinks were tested according to JEDEC JESD 16.1 standard for forced convection. It was observed that the error between computational and experimental values of thermal resistances was 10% for the cases considered.


2012 ◽  
Vol 562-564 ◽  
pp. 755-758 ◽  
Author(s):  
Bo Xu ◽  
Xin Chun Lin ◽  
Li Peng

Power dissipation problems for Insulated Gate Bipolar Transistor (IGBT) are requiring increasingly complex design solutions. While designs that are more efficient make thermal management possible, current systems still require CFD methods for dissipating heat. Parameter optimization of the air-cooled heat sink is carried out to cool a three-chip, 2400w IGBT plate. The parameters are compared using maximum junction temperature and fan efficiency.


2011 ◽  
Vol 308-310 ◽  
pp. 1122-1128
Author(s):  
Siwadol Kanyakam ◽  
Sujin Bureerat

In this work, performance enhancement of a multiobjective evolutionary algorithm (MOEA) by integrating a surrogate model to the design process is presented. The MOEA used in this work is multiobjective population-based incremental learning (PBIL). The bi-objective design problem of a pin-fin heat sink (PFHS) is posed to minimize junction temperature and fan pumping power while meeting design constraints. A Kriging (KRG) model is used for improving the performance of PBIL. The training points for constructing a surrogate KRG model are sampled by means of a Latin hypercube sampling (LHS) technique. It is shown that hybridization of PBIL and KRG can enhance the search performance of PBIL.


Author(s):  
Zhaojuan He ◽  
Patrick E. Phelan

With the development and increasing use of high-density components with their high power dissipation needs, electronic packages have required the investigation of innovative techniques for the efficient dissipation of heat. One prevalent method is the use of forced convection heat spreaders, called heat sinks, which are also widely used in Burn-In (BI) ovens. There are some contradictions remaining in recent research on modeling and Nusselt number correlations of heat sinks in forced air convection. This paper begins by reviewing past research for different finned heat sink geometries with and without bypass flow over the heat sinks. A new method called Least Volume Optimization is then proposed to analyze the thermal performance of finned heat sinks for BI air-cooling solutions. The analysis shows that the volumetric heat dissipation of a parallel plate fin heat sink is higher than that of a pin fin heat sink, based on an optimal fin geometry.


Sign in / Sign up

Export Citation Format

Share Document