Characterization on Aggregating Structure of Aloe Extract Crosslinked Cotton Fabric

2011 ◽  
Vol 311-313 ◽  
pp. 1132-1135 ◽  
Author(s):  
Yun Hui Xu ◽  
Li Chen

For exploiting the multifunctional ecological cotton textile products and developing the green modified technology for cotton fabrics, a novel cotton fabric with aloe extract crosslinking was prepared using citric acid as a crosslink agent under the pad-dry-cure procedure. Scanning electron microscopic photographs showed that the modification with aloe extract occurred on the surface of cotton fabric. FT-IR spectra of the modified fabric illuminated that aloe extract crosslinked with cotton fabric through the bridge linkage of citric acid after a series of reaction. The wide angle X-ray diffraction analysis indicated that the crystallinity of aloe extract modified cotton fabric slightly decreased. Furthermore, the changes in the aggregating structure and crystallinity were also reflected in the mechanical property studies of these modified fabrics. After treatment by aloe extract, the breaking strength and elongation of cotton fabric decreased. However, the moisture regain of the modified cotton fabric increased. The results obtained are useful in explaining structure-property correlations with respect to the aggregating structure and crystallinity, and suggest valuable information in planning applications for the aloe extract modified cotton textile products.

2018 ◽  
Vol 14 (2) ◽  
pp. 5554-5563
Author(s):  
Amal Gad Elshahawy ◽  
S. I. Badr ◽  
A. A. Shadi

Structural and optical studies in combination with surface morphology investigations were accomplished for blend sample (70/30)wt% PVA/Starch in addition to other samples of the same composition containing added pre-calculated chitosan contents via ordinary casting route. All synthesized samples were tested using various experimental techniques including Fourier transform infrared FT-IR, UV-visible spectroscopic measurements and scanning electron microscopic (SEM). Variations in FT-IR, UV/vis. band positions and intensities were used as an evidence for the interaction between constituent partner polymeric matrices. The X-ray diffraction (XRD) experimental data reveled that introduction of chitosan into the polymeric matrices results in a decreasing of percent crystallinity through material. SEM micrographs for samples containing chitosan different concentration revealed small granules and bright spots that attributed to starch. Adding up to 80% more chitosan caused the cryo-fractured surface to become rougher and more brittle.


Materials ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3249 ◽  
Author(s):  
Satoshi Idenoue ◽  
Yoshitaka Oga ◽  
Daichi Hashimoto ◽  
Kazuya Yamamoto ◽  
Jun-ichi Kadokawa

In this study, we have performed the preparation of reswellable amorphous porous celluloses through regeneration from hydrogels. The cellulose hydrogels were first prepared from solutions with an ionic liquid, 1-butyl-3-methylimidazolium chloride (BMIMCl), in different concentrations. Lyophilization of the hydrogels efficiently produced the regenerated celluloses. The powder X-ray diffraction and scanning electron microscopic measurements of the products suggest an amorphous structure and porous morphology, respectively. Furthermore, the pore sizes of the regenerated celluloses, or in turn, the network sizes of cellulose chains in the hydrogels, were dependent on the concentrations of the initially prepared solutions with BMIMCl, which also affected the tensile mechanical properties. It was suggested that the dissolution states of the cellulose chains in the solutions were different, in accordance with the concentrations, which representatively dominated the pore and network sizes of the above materials. When the porous celluloses were immersed in water, reswelling was observed to regenerate the hydrogels.


Polymers ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 409 ◽  
Author(s):  
Dandan Zhao ◽  
Wen-Can Huang ◽  
Na Guo ◽  
Shuye Zhang ◽  
Changhu Xue ◽  
...  

In this research, a two-step extraction approach was developed for chitin preparation from shrimp shells by utilizing citric acids and deep eutectic solvents (DESs), which effectively removed minerals and proteins. In the first step, minerals of shrimp shells were removed by citric acid, and the demineralization efficiency reached more than 98%. In the second step, the removal of protein was carried out using deep eutectic solvents with the assistance of microwave, and the deproteinization efficiency was more than 88%. The results of scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction analysis (XRD), and thermogravimetric analysis (TGA) showed that the quality of DES-prepared chitin was comparable to that of traditional acid/alkali-prepared chitin. These results were realized without utilizing hazardous chemicals, which are detrimental to the environment. This research indicates that a DES-based preparation approach has the potential for application in the recovery of biopolymers from natural resources.


2016 ◽  
Vol 3 (10) ◽  
pp. 1306-1316 ◽  
Author(s):  
M. Węcławik ◽  
A. Gągor ◽  
R. Jakubas ◽  
A. Piecha-Bisiorek ◽  
W. Medycki ◽  
...  

Two hybrid crystals imidazolium iodoantimonate(iii) and iodobismuthate(iii) have been synthesized and characterized in a wide temperature range (100–350 K) by means of X-ray diffraction, dielectric spectroscopy, proton magnetic resonance, FT-IR spectroscopy and optical observations.


2013 ◽  
Vol 78 (9) ◽  
pp. 1387-1395 ◽  
Author(s):  
Nebojsa Nikolic ◽  
Vesna Maksimovic ◽  
Goran Brankovic ◽  
Predrag Zivkovic ◽  
Miomir Pavlovic

Lead electrodeposition processes from the basic (nitrate) and complex (acetate) electrolytes were mutually compared by the scanning electron microscopic and the X-ray diffraction analysis of the produced powder particles. The shape of dendritic particles strongly depended on the type of electrolyte. The dendrites composed of stalk and weakly developed primary branches (the primary type) were predominantly formed from the basic electrolyte. The ramified dendrites composed of stalk and of both primary and secondary branches (the secondary type) were mainly formed from the complex electrolyte. In the both type of powder particles Pb crystallites were predominantly oriented in the (111) plane. Formation of powder particles of the different shape with the strong (111) preferred orientation was discussed and explained by the consideration of the general characteristics of the growth of a crystal in the electrocrystallization processes.


2002 ◽  
Vol 01 (05n06) ◽  
pp. 477-481 ◽  
Author(s):  
LEE DON KEUN ◽  
YOUNG SOO KANG

Silver nanoclusters have been formed by thermal decomposition of Ag-oleate complex. Transmission electron microscopic (TEM) images of the particles showed two-dimensional assembly of particles with diameter of 10.5 nm. Energy-dispersive X-ray (EDX) spectrum and X-ray diffraction (XRD) peaks of the nanoclusters showed the highly crystalline nature of the silver structures. The decomposition of silver-oleate complex was analyzed by Thermo Gravimetric Analyzer (TGA) and the crystallization process was observed by XRD. The removal of the surfactant surrounding silver nanoclusters was measured by FT-IR and SEM images.


Sign in / Sign up

Export Citation Format

Share Document