scholarly journals Synthesis and Structural Characteristics of Semi-Synthetic Biopolymer Blends Based on Polyvinyl Alcohol, Starch and Chitosan

2018 ◽  
Vol 14 (2) ◽  
pp. 5554-5563
Author(s):  
Amal Gad Elshahawy ◽  
S. I. Badr ◽  
A. A. Shadi

Structural and optical studies in combination with surface morphology investigations were accomplished for blend sample (70/30)wt% PVA/Starch in addition to other samples of the same composition containing added pre-calculated chitosan contents via ordinary casting route. All synthesized samples were tested using various experimental techniques including Fourier transform infrared FT-IR, UV-visible spectroscopic measurements and scanning electron microscopic (SEM). Variations in FT-IR, UV/vis. band positions and intensities were used as an evidence for the interaction between constituent partner polymeric matrices. The X-ray diffraction (XRD) experimental data reveled that introduction of chitosan into the polymeric matrices results in a decreasing of percent crystallinity through material. SEM micrographs for samples containing chitosan different concentration revealed small granules and bright spots that attributed to starch. Adding up to 80% more chitosan caused the cryo-fractured surface to become rougher and more brittle.

2011 ◽  
Vol 311-313 ◽  
pp. 1132-1135 ◽  
Author(s):  
Yun Hui Xu ◽  
Li Chen

For exploiting the multifunctional ecological cotton textile products and developing the green modified technology for cotton fabrics, a novel cotton fabric with aloe extract crosslinking was prepared using citric acid as a crosslink agent under the pad-dry-cure procedure. Scanning electron microscopic photographs showed that the modification with aloe extract occurred on the surface of cotton fabric. FT-IR spectra of the modified fabric illuminated that aloe extract crosslinked with cotton fabric through the bridge linkage of citric acid after a series of reaction. The wide angle X-ray diffraction analysis indicated that the crystallinity of aloe extract modified cotton fabric slightly decreased. Furthermore, the changes in the aggregating structure and crystallinity were also reflected in the mechanical property studies of these modified fabrics. After treatment by aloe extract, the breaking strength and elongation of cotton fabric decreased. However, the moisture regain of the modified cotton fabric increased. The results obtained are useful in explaining structure-property correlations with respect to the aggregating structure and crystallinity, and suggest valuable information in planning applications for the aloe extract modified cotton textile products.


Author(s):  
B. Anandh ◽  
A. Muthuvel ◽  
M. Emayavaramban

The present investigation demonstrates the formation of silver nanoparticles by the reduction of the aqueous silver metal ions during exposure to the Lagenaria siceraria leaf extract. The synthesized AgNPs have characterized by UV-visible spectroscopy, X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) techniques. AgNPs formation has screened by UV-visible spectroscopy through colour conversion due to surface plasma resonance band at 427 nm. X-ray diffraction (XRD) confirmed that the resulting AgNPs are highly crystalline and the structure is face centered cubic (fcc). FT-IR spectrum indicates the presence of different functional groups present in the biomolecules capping the nanoparticles. Further, inhibitory activity of AgNPs and leaf extract were tested against human pathogens like gram-pastive (Staphylococcus aureus, Bacillus subtilis), gram-negative (Escherichia coli and Pseudomonas aeruginosa). The results indicated that the AgNPs showed moderate inhibitory actions against human pathogens than Lagenaria siceraria leaf extract, demonstrating its antimicrobial value against pathogenic diseases


Materials ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3249 ◽  
Author(s):  
Satoshi Idenoue ◽  
Yoshitaka Oga ◽  
Daichi Hashimoto ◽  
Kazuya Yamamoto ◽  
Jun-ichi Kadokawa

In this study, we have performed the preparation of reswellable amorphous porous celluloses through regeneration from hydrogels. The cellulose hydrogels were first prepared from solutions with an ionic liquid, 1-butyl-3-methylimidazolium chloride (BMIMCl), in different concentrations. Lyophilization of the hydrogels efficiently produced the regenerated celluloses. The powder X-ray diffraction and scanning electron microscopic measurements of the products suggest an amorphous structure and porous morphology, respectively. Furthermore, the pore sizes of the regenerated celluloses, or in turn, the network sizes of cellulose chains in the hydrogels, were dependent on the concentrations of the initially prepared solutions with BMIMCl, which also affected the tensile mechanical properties. It was suggested that the dissolution states of the cellulose chains in the solutions were different, in accordance with the concentrations, which representatively dominated the pore and network sizes of the above materials. When the porous celluloses were immersed in water, reswelling was observed to regenerate the hydrogels.


2013 ◽  
Vol 78 (9) ◽  
pp. 1387-1395 ◽  
Author(s):  
Nebojsa Nikolic ◽  
Vesna Maksimovic ◽  
Goran Brankovic ◽  
Predrag Zivkovic ◽  
Miomir Pavlovic

Lead electrodeposition processes from the basic (nitrate) and complex (acetate) electrolytes were mutually compared by the scanning electron microscopic and the X-ray diffraction analysis of the produced powder particles. The shape of dendritic particles strongly depended on the type of electrolyte. The dendrites composed of stalk and weakly developed primary branches (the primary type) were predominantly formed from the basic electrolyte. The ramified dendrites composed of stalk and of both primary and secondary branches (the secondary type) were mainly formed from the complex electrolyte. In the both type of powder particles Pb crystallites were predominantly oriented in the (111) plane. Formation of powder particles of the different shape with the strong (111) preferred orientation was discussed and explained by the consideration of the general characteristics of the growth of a crystal in the electrocrystallization processes.


2012 ◽  
Vol 602-604 ◽  
pp. 917-920 ◽  
Author(s):  
Zhen Hui Xiao ◽  
Shui Sheng Wu ◽  
Yan Lin Sun ◽  
Yu Lin Zhao ◽  
Ya Ming Wang

Graphene was synthesized by microwave-hydrothermal chemical reduction of graphite oxide using hydrazine hydrate as the reducing agent. Graphene was characterized using X-ray diffraction, UV-visible spectrum, FT-IR spectrum and scanning electron microscopy. Results indicated that the as-prepared graphene was wrinkled and comprised fewer graphenes with a highly crystalline structure.


2013 ◽  
Vol 678 ◽  
pp. 248-252
Author(s):  
K. Kavi Rasu ◽  
Dhandapani Vishnushankar ◽  
V. Veeravazhuthi

Bismuth sulfide (Bi2S3) and Polyvinyl pyrrolidone (PVP) encapsulated Bi2S3 Nanoparticles are synthesized from aqueous solutions at room temperature. Synthesized samples are subjected to UV-Visible Spectroscopy, X-Ray Diffraction (XRD), Scanning electron microscopy (SEM), Energy Dispersive Analysis of X-ray (EDAX), Transmission Electron Microscopy (TEM) and FT-IR studies and their results are compared. X-ray diffraction spectrum reveals the crystalline nature of the synthesized samples. Grain size value of PVP/ Bi2S3 nanoparticles show a decrease when compared to Bi2S3 nanoparticles and this ensures the good encapsulant effect of PVP on Bi2S3 nanoparticles. SEM images show that all the particles in the synthesized sample are nearly equal in size. From the TEM image we conclude that the particle size lies between 30nm to 70nm. Finally the samples are subjected to EDAX studies for determining their composition.


2002 ◽  
Vol 01 (05n06) ◽  
pp. 477-481 ◽  
Author(s):  
LEE DON KEUN ◽  
YOUNG SOO KANG

Silver nanoclusters have been formed by thermal decomposition of Ag-oleate complex. Transmission electron microscopic (TEM) images of the particles showed two-dimensional assembly of particles with diameter of 10.5 nm. Energy-dispersive X-ray (EDX) spectrum and X-ray diffraction (XRD) peaks of the nanoclusters showed the highly crystalline nature of the silver structures. The decomposition of silver-oleate complex was analyzed by Thermo Gravimetric Analyzer (TGA) and the crystallization process was observed by XRD. The removal of the surfactant surrounding silver nanoclusters was measured by FT-IR and SEM images.


Sign in / Sign up

Export Citation Format

Share Document