The Study of Power Ultrasonic Vibration Cutting Heat

2011 ◽  
Vol 311-313 ◽  
pp. 297-300 ◽  
Author(s):  
Yan Jun Shao ◽  
Jian Qing Wang ◽  
X.J. Zhu ◽  
Quan Chen

Cutting heat and the resulting temperature change material properties, thus it produces tremendous influence to cutting force, tool condition and surface roughness. The cutting heat generated by the power ultrasonic vibration cutting process were is calculated in this paper, the power ultrasonic vibration cutting is studied by using the finite element software, the conclusions are that during power ultrasonic vibration cutting, the cutting heat generated depends on the net cutting time of a vibration cycle, the rapid cooling is the main reason for lower cutting temperature in the separation stage of the workpiece and tool, and the maximum temperature of the tool is greater than conventional turning, but the average temperature of the tool is low than traditional turning.

2012 ◽  
Vol 217-219 ◽  
pp. 1978-1982
Author(s):  
Jing Li ◽  
Yang Jiao ◽  
Zhan Li Wang ◽  
Fu Zhi Huang

Cutting heat and cutting temperature are the most important physical phenomena in cutting machining process. Cutting temperature and its distribution affect the abrasion of cutting tool and the operating life directly. Meanwhile they can affect the machining precision and the machined surface quality. In this paper the ABAQUS finite element software is used to predict the thermal distribution and variable condition, moreover it is tested through the experiment. As is shown from the result, the changing trend of cutting temperature by the simulation is consistent with the real measured result, which has better precision and reliability and supplies the theoretical basis for the deformation analysis caused by cutting heat in the cutting machining process.


2016 ◽  
Vol 693 ◽  
pp. 1272-1278
Author(s):  
Jie Li ◽  
Feng Jiao ◽  
Ying Niu ◽  
Long Fei Shi

Based on the mechanism of single-excitation elliptical vibration by means of opening chutes on the horn, a novel two-dimensional ultrasonic cutting system was developed. Vibration characteristics of the two-dimensional ultrasound cutting system were researched and the longitudinal and bending amplitude of the system with different number of chutes were obtained. By using developed two-dimensional ultrasonic vibration cutting systems, series of cutting experiments were carried out and cutting force characteristics were researched compared with that in traditional cutting.


Biomimetics ◽  
2019 ◽  
Vol 4 (3) ◽  
pp. 57 ◽  
Author(s):  
Xiangyu Zhang ◽  
Zhenlong Peng ◽  
Deyuan Zhang

Cutting is the foundation of manufacturing in industry. The main cutting objects include metals, ceramics, glasses, compositions, and even biological materials such as tissues and bones. The special properties of each material such as hardness, ductility, brittleness, and heat conductivity lead to either a large cutting force or a high cutting temperature. Both of these factors result in poor machinability due to rapid tool wear or break or unsatisfactory surface integrity of the material finishing surface using the conventional cutting (CC, conventional cutting) types. In nature, snakes have their own way of reducing heat accumulation on their body when moving on the hot desert surface. They move forward along an “S”-type path, so that the bottom of their body separates from the desert intermittently. In this way, the separation interval both reduces the cutting heat accumulations and effectively achieves cooling by allowing the air to go through. In addition, the acceleration of Odontomachus monticola’s two mandibles when striking a target can reach 71,730 g m/s2 within 180 ms, which can easily break the target surface by the transient huge impact. Therefore, based on a snake’s motion on the desert surface and Odontomachus monticola’s striking on the target surface, respectively, an ultrasonic-frequency intermittent cutting method, also called “snake-type” vibration cutting (SVC, snake-type vibration cutting), was proposed in this study. First, its bionic kinematics were analyzed, then the SVC system’s design was introduced. Finally, cutting experiments were conducted on a common and typical difficult-to-cut material, namely titanium alloys. Cutting force, cutting temperature, and the surface integrity of the material finishing surface were measured, respectively. The results demonstrated that, compared to conventional cutting methods, SVC achieved a maximum of 50% and 30% reductions of cutting force and cutting temperature, respectively. Moreover, the surface integrity was improved both in surface roughness and residual stress state.


Sign in / Sign up

Export Citation Format

Share Document