Prediction on Cutting Heat of the Simulation in NC Lathe

2012 ◽  
Vol 217-219 ◽  
pp. 1978-1982
Author(s):  
Jing Li ◽  
Yang Jiao ◽  
Zhan Li Wang ◽  
Fu Zhi Huang

Cutting heat and cutting temperature are the most important physical phenomena in cutting machining process. Cutting temperature and its distribution affect the abrasion of cutting tool and the operating life directly. Meanwhile they can affect the machining precision and the machined surface quality. In this paper the ABAQUS finite element software is used to predict the thermal distribution and variable condition, moreover it is tested through the experiment. As is shown from the result, the changing trend of cutting temperature by the simulation is consistent with the real measured result, which has better precision and reliability and supplies the theoretical basis for the deformation analysis caused by cutting heat in the cutting machining process.

2012 ◽  
Vol 580 ◽  
pp. 7-11
Author(s):  
Yue Zhang ◽  
Li Han ◽  
You Jun Zhang ◽  
Xi Chuan Zhang

The machining process of titanium alloys always need special control by using coolant and lubricant as it is one of the difficult-to-cut materials. The cutting experiments are carried out based on green cooling and lubricating technology. To achieve green cutting of titanium alloy Ti-6Al-4V with water vapor cooling and lubricating, a minitype generator is developed. Compared to dry and wet cutting, the using of water vapor decreases the cutting force and the cutting temperature respectively; enhances the machined surface. And it can help to chip forming and breaking. Water vapor application also improves Ti-6Al-4V machinability. The excellent cooling and lubricating action of water vapor could be summarized that water molecule has polarity, small diameter and high speed, can be easily and rapidly to proceed adsorption in the cutting zone. The results indicate that the using of water vapor has the potential to attain the green cutting of titanium alloy.


2013 ◽  
Vol 770 ◽  
pp. 69-73
Author(s):  
Wei Ren ◽  
Wei Yu ◽  
Mao Su Zhou

t is well known that slender rod machining operation is a very difficult problem due to its low stiffness. During slender rod machining process, the deflection, vibration, cutting heat and cutting force of the machined part are the main reasons affecting the product quality. Based on the analysis of current research status of slender rod milling technology, process scheme, milling strategy, clamping fixture and tool designing is carried out in this work. In a roughing milling stage, we create a new strategy of square rod milling, called equilateral milling strategy to eliminating deflection. In finish-milling top waveform stage, a way using semicircle profile cutter to finish was applied. Complex interpolated movement is transform into simple two-dimension curved movement to shorten machine time and increase of efficiency in the way. In addition, machined surface with burnishing effect, high precision and high surface quality is obtained.


2011 ◽  
Vol 311-313 ◽  
pp. 297-300 ◽  
Author(s):  
Yan Jun Shao ◽  
Jian Qing Wang ◽  
X.J. Zhu ◽  
Quan Chen

Cutting heat and the resulting temperature change material properties, thus it produces tremendous influence to cutting force, tool condition and surface roughness. The cutting heat generated by the power ultrasonic vibration cutting process were is calculated in this paper, the power ultrasonic vibration cutting is studied by using the finite element software, the conclusions are that during power ultrasonic vibration cutting, the cutting heat generated depends on the net cutting time of a vibration cycle, the rapid cooling is the main reason for lower cutting temperature in the separation stage of the workpiece and tool, and the maximum temperature of the tool is greater than conventional turning, but the average temperature of the tool is low than traditional turning.


2010 ◽  
Vol 139-141 ◽  
pp. 681-684
Author(s):  
Yue Zhang ◽  
Li Han ◽  
Qi Dong Li ◽  
Tai Li Sun ◽  
Xi Chuan Zhang

The machining process of titanium alloys always need special control by using coolant and lubricant as it is one of the difficult-to-cut materials. To achieve green cutting of titanium alloy Ti-6Al-4V with water vapor cooling and lubricating, a minitype generator is developed. Compared to dry and wet cutting, the using of water vapor decreases the cutting force and the cutting temperature respectively; enhances the machined surface appearance. Water vapor application also improves Ti-6Al-4V machinability. The excellent cooling and lubricating action of water vapor could be summarized that water molecule has polarity, small diameter and high speed, can be easily and rapidly to proceed adsorption in the cutting zone. The results indicate that the using of water vapor has the potential to attain the green cutting of titanium alloy instead of cutting floods.


2013 ◽  
Vol 579-580 ◽  
pp. 3-7
Author(s):  
Yi Hang Fan ◽  
Zhao Peng Hao ◽  
Min Li Zheng ◽  
Feng Lian Sun ◽  
Suo Liang Niu

Ti6Al4V has great affinity with tool material in machining process, which easily leads to tool diffusion wear. Turning experiments were carried out to study cutting temperature and pressure at tool-chip/workpiece. Based on the analysis, a scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectrometer (EDS) was used to analyze tool wear morphology. The affinity of tool and workpiece material using the Ti-W, Ti-Co diagram was also studied to elaborate the diffusion mechanism in this present study. The results shows that the cutting temperature is very high and the temperature increases with the increase of cutting speeds in machining Ti6Al4V. At the contact area, the highest temperature is located in tool rake face near to tool tip. The resilience of workpiece results in serious attrition between tool flank face and the machined surface. The highest pressure is located in tool flank face near to tool tip and the pressure in tool-workpiece interface is much higher than that in tool-chip interface. Under the high cutting temperature and high pressure at tool-chip/workpiece interface, diffusion occurred both at tool rake an flank face in machining Ti6Al4V. Because of the higher temperature at tool rake face diffusion at tool rake face ia more sever than that at tool flank face.


2012 ◽  
Vol 622-623 ◽  
pp. 399-403 ◽  
Author(s):  
Tarun Thomas George ◽  
J. Venugopal ◽  
M. Anthony Xavior ◽  
R. Vinayagamoorthy

The quality of a machined surface is becoming more and more important to satisfy the increasing demands of sophisticated component performance, longevity, and reliability. The objective of this paper is to analyze the performance of precision turning using conventional lathe on Ti6Al4V under dry working conditions. Various parameters that affect the machining processes were identified and a consensus was reached regarding its values. The proposed work is to perform machining under the selected levels of conditions and parameters and to estimate the, cutting temperature and surface roughness generated as the result of the machining process. ANOVA is used to find the percentage contribution of each parameter to the surface roughness and cutting temperature.


Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2019
Author(s):  
Lulu Jing ◽  
Ming Chen ◽  
Qinglong An

Dry milling of hardened steel is an economical and environmentally friendly machining process for manufacturing a mold and die. Advances in coating technology makes the dry milling a feasible approach instead of a traditional grinding process. However, the cutting condition is particularly severe in a dry machining process. High-performance coating is desired to meet the requirement of green and highly efficient manufacturing. This study concerned the performance of AlTiN-based coatings. The effect of Al content, and the AlTiN composite coating on the cutting performance of tools are investigated in terms of friction force at the tool–chip interface, specific cutting energy, cutting temperature on the machined surface, tool wear pattern and mechanism, and surface integrity. The results show that advanced AlTiN-based coatings reduce the force and cutting energy and protect the cutters from the high cutting temperature effectively. The main wear mechanisms of the coated tools are adhesive wear, chipping induced by fatigue fracture and abrasive wear. In general, the dry milling of hardened steel with AlTiN-based coatings gains a quite satisfactory surface quality. Furthermore, AlTiN-WC/C hard-soft multilayer coating performs well in reducing cutting force, preventing adhesion wear and isolating the cutting heat, being suitable for dry milling of hardened SKD11.


2021 ◽  
Author(s):  
Petr Masek ◽  
Pavel Zeman ◽  
Petr Kolar

Abstract Turning of carbon fibre reinforced thermoplastic pipes is used for production of fluid ducts for the aerospace and oil industries. Although thermoplastics are chemically stable, the matrix could be affected by the heat introduced by the machining process. This paper presents how to measure cutting temperature using C/PEEK and C/PA12 material as examples. A suitable method based on a thermocouple circuit and electric conductivity of the carbon fibres is presented, including system calibration. Measurement uncertainties were established for this new method of calibration and measurement for both tested materials. The cutting temperature measurements were analysed by ANOVA and significant factors and its dependence on temperature were identified for further machining process optimization and determination of the predictive model equation. This mathematical cutting temperature model was estimated based on the measurements, and empirical coefficients were identified for selected statistically significant parameters for both composite materials. Because the measured temperatures were above the melting point, the machined surface, chips and structural changes of polymeric matrices were measured in order to prove heat affection.


2020 ◽  
Vol 15 ◽  
Author(s):  
Fei Sun ◽  
Guohe Li ◽  
Qi Zhang ◽  
Meng Liu

: Cr12MoV hardened steel is widely used in the manufacturing of stamping die because of its high strength, high hardness, and good wear resistance. As a kind of mainstream cutting technology, high-speed machining has been applied in the machining of Cr12MoV hardened steel. Based on the review of a large number of literature, the development of high-speed machining of Cr12MoV hardened steel was summarized, including the research status of the saw-tooth chip, cutting force, cutting temperature, tool wear, machined surface quality, and parameters optimization. The problems that exist in the current research were discussed and the directions of future research were pointed out. It can promote the development of high-speed machining of Cr12MoV hardened steel.


2011 ◽  
Vol 189-193 ◽  
pp. 3187-3190 ◽  
Author(s):  
Jin Li Wang ◽  
Lin Cai ◽  
Hong Tao Zheng

When lubricants are used according to special requirements, it is possible to achieve considerable cost savings. Compared to conventional coolant cooling technology used in metal cutting, oil-air lubrication increases cooling performance, avoids environmental pollution, reduces running and maintenance costs. The cutting temperature contrast experimental research was based on close to practice 45# steel in dry cutting, wet cutting and oil-air lubrication conditions. The research work concentrated on the superiority of oil-air lubrication cooling and the influence of cutting amount on temperature. The experimental results show that oil-air lubrication is more effective in reducing the cutting temperature than wet cutting or dry cutting, this paper details the cutting temperature curves at several different tests provides a basis for industrial production, improves the level of machining process and the significance was being reported.


Sign in / Sign up

Export Citation Format

Share Document