Effect of Oxygen and Water in the CO Photocatalytic Oxidation with TiO2

2011 ◽  
Vol 324 ◽  
pp. 149-152
Author(s):  
Carlos Youssef ◽  
Eric Puzenat ◽  
Samir Najm ◽  
Nicole Jaffrezic-Renault ◽  
Chantal Guillard

TiO2P25 catalyst was used to study the photocatalytic oxidation of CO to CO2at 288K. Two parameters, O2and H2O were used to study its effect on the photocatalytic process. The dependency of the reaction rate on the CO concentration and water vapor was explained in terms of Langmuir-Hinshelwood mechanism. The presence of a high concentration of water vapor inhibits the CO photocatalytic oxidation at low oxygen concentration. We have noted an adsorption competition between CO and H2O on the TiO2active sites.

2009 ◽  
Vol 69 (1) ◽  
pp. 1-18 ◽  
Author(s):  
LP. Sartori ◽  
MG. Nogueira ◽  
R. Henry ◽  
EM. Moretto

During three consecutive years, monthly samples of zooplankton were taken in the lacustrine (dam) zone of Jurumirim (São Paulo, Brazil). The seasonal effect on basic limnological features (thermal regime, oxygen distribution, phytoplankton biomass, etc.) was also examined. The influence of the seasonality on the fluctuation of the zooplankton composition and abundance was not clearly detected (low degree of recurrent patterns). Rotifers (32 taxa) were the most abundant organisms during almost the entire study period with some seasonal alternations in the maximum abundance peaks of the main taxa (Conochilus unicornis, Keratella americana, K. cochlearis and Hexarthra spp.), except for Polyarthra (mainly P. vulgaris). Only occasionally copepods were numerically dominant. Higher copepod abundance was positively associated to periods of increase in the water retention time. Among the Copepoda (10 taxa) the calanoids (mainly Notodiaptomus iheringi) were more abundant, especially in warmer periods. Conversely, cyclopoids had higher abundance in autumn and winter. The species Thermocyclops minutus and T. decipiens co-occurred, but the first attained higher abundance. Some evidence of co-existence strategies between both species are considered. Cladocera (17 taxa) was never numerically dominant and the main taxa (Bosmina spp., Ceriodaphnia spp. and Diaphanosoma spp.) occurred almost the whole study period and did not present a seasonal pattern of fluctuation. Diaphanosoma (mainly D. birgei) attained the highest abundance among cladocerans. Most organisms were always found at the surface, but they also occupy the whole water column, even in periods of stratified conditions and low oxygen concentration in the bottom layers. Among the main zooplanktonic taxa, only Hexarthra avoids deep layers. An exceptionally high concentration of Copepoda nauplii on the surface was influenced by low transparency, high concentration of phytoplankton at this layer and low oxygen concentration at the bottom. In periods of higher retention timevariability there was a more heterogeneous distribution of the zooplankton in the water column. The increase in the retention time seems also to favor the copepod development. Finally, some inter-decade changes are considered on the basis of zooplankton assemblage structure observations.


1998 ◽  
Vol 36 (11) ◽  
pp. 3420-3422 ◽  
Author(s):  
J. C. Palomino ◽  
A. M. Obiang ◽  
L. Realini ◽  
W. M. Meyers ◽  
F. Portaels

The effect of low oxygen concentration on the growth of 15 strains of Mycobacterium ulcerans was evaluated in the BACTEC system. Reduced oxygen tension enhanced the growth of M. ulcerans, suggesting that this organism has a preference for microaerobic environments. Application of this observation may improve rates of isolation of M. ulcerans in primary culture from clinical samples and promote isolation of the bacterium from environmental sources.


Author(s):  
Norshahidatul Akmar Mohd Shohaimi ◽  
Norfakhriah Jelani ◽  
Ahmad Zamani Ab Halim ◽  
Nor Hakimin Abdullah ◽  
Nurasmat Mohd Shukri

: The presence of relatively high naphthenic acid in crude oil may contribute to the major corrosion in oil pipelines and distillation units in crude oil refineries. Thus, high concentration Naphthenic Acids crude oil is considered tobe of low quality and is marketed at lower prices. In order to overcome this problem, neutralization method had been developed to reduce the TAN value in crude oil. In this study, crude oil from Petronas Penapisan Melaka was investigated. The parameters studied were reagent concentration, catalyst loading, calcination temperature and reusability of the potential catalyst. Basic chemical used were 2- methylimidazole in polyethylene glycol (PEG 600) with concentration 100, 500 and 1000 ppm. Cerium oxide-based catalysts supported onto alumina prepared with different calcination temperatures. The catalyst was characterized by using Brunauer-Emmett-Teller (BET), Fourier Transform Infrared Spectroscopy (FTIR) and Thermogravimetry Analysis-Differential Thermal Gravity (TGA-DTG) to study physical properties of the catalyst. The Ce/Al2O3 catalyst calcined at 1000°C was the best catalyst due to larger surface area formation which lead to increment of active sites thus will boost the catalytic activity. The result showed that the Ce/Al2O3 catalyst meet Petronas requirement as the TAN value reduced to 0.6 mgKOH/g from original TAN value of 4.22 mgKOH/g. The best reduction of TAN was achieved by using catalyst loading of 0.39% and reagent of 1000 ppm.


2021 ◽  
Vol 560 ◽  
pp. 179-185
Author(s):  
Adiza Abass ◽  
Tokuju Okano ◽  
Kotchakorn Boonyaleka ◽  
Ryo Kinoshita-Daitoku ◽  
Shoji Yamaoka ◽  
...  

Water ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 156
Author(s):  
Manjing Lu ◽  
Jiaqi Wang ◽  
Yuzhong Wang ◽  
Zhengguang He

Chemical synthetic pharmaceutical wastewater has characteristics of high concentration, high toxicity and poor biodegradability, so it is difficult to directly biodegrade. We used acid modified attapulgite (ATP) supported Fe-Mn-Cu polymetallic oxide as catalyst for multi-phase Fenton-like ultraviolet photocatalytic oxidation (photo-Fenton) treatment with actual chemical synthetic pharmaceutical wastewater as the treatment object. The results showed that at the initial pH of 2.0, light distance of 20 cm, and catalyst dosage and hydrogen peroxide concentration of 10.0 g/L and 0.5 mol/L respectively, the COD removal rate of wastewater reached 65% and BOD5/COD increased to 0.387 when the reaction lasted for 180 min. The results of gas chromatography-mass spectrometry (GC-MS) indicated that Fenton-like reaction with Fe-Mn-Cu@ATP had good catalytic potential and significant synergistic effect, and could remove almost all heterocycle compounds well. 3D-EEM (3D electron microscope) fluorescence spectra showed that the fluorescence intensity decreased significantly during catalytic degradation, and the UV humus-like and fulvic acid were effectively removed. The degradation efficiency of the nanocomposite only decreased by 5.8% after repeated use for 6 cycles. It seems appropriate to use this process as a pre-treatment for actual pharmaceutical wastewater to facilitate further biological treatment.


1982 ◽  
Vol 92 (1) ◽  
pp. 172 ◽  
Author(s):  
J. H. Hendry ◽  
J. V. Moore ◽  
B. W. Hodgson ◽  
J. P. Keene

2013 ◽  
Vol 39 (1) ◽  
pp. 83-91 ◽  
Author(s):  
Katarzyna Bernat

Abstract In this study, the dependence between volumetric exchange rate (n) in an SBR (Sequencing Batch Reactor) with a modified cycle and simultaneous nitrification and denitrification (SND) efficiency during the treatment of anaerobic sludge digester supernatant was determined. In the SBR cycle alternating three aeration phases (with limited dissolved oxygen (DO) concentration up to 0.7 mg O2/L) and two mixing phases were applied. The lengths of each aeration and mixing phases were 4 and 5.5 h, respectively. Independently of n, a total removal of ammonium was achieved. However, at n = 0.1 d-1 and n = 0.3 d-1 nitrates were the main product of nitrification, while at n = 0.5 d-1, both nitrates and nitrites occurred in the effluent. Under these operational conditions, despite low COD/N (ca. 4) ratio in the influent, denitrification in activated sludge was observed. A higher denitrification efficiency at n = 0.5 d-1 (51.3%) than at n = 0.1 d-1 (7.8%) indicated that n was a crucial factor influencing SND via nitrite and nitrate in the SBR with a low oxygen concentration in aeration phases.


Sign in / Sign up

Export Citation Format

Share Document