Tribological Property of Nano-Cu as Additive in Lubricating Oil

2011 ◽  
Vol 335-336 ◽  
pp. 487-490
Author(s):  
Shun Xing Wang ◽  
Xu Rui Gao

The tribological property of nano-Cu as additive in lubricating oil was investigated on a stock-on-ring testing machine. Friction coefficient and wear mass loss were discussed in order to study tribological property. And the worn surfaces were characterized by scanning electronic microscopy(SEM). Then wear and lubricating mechanism were discussed. The results show that the wear and friction properties of nano-Cu as lubricating oil additive are excellent. And when the adding quantity is 0.04% and 0.03%(mass fraction), the friction coefficient and wear mass loss is best, respectively.

NANO ◽  
2021 ◽  
pp. 2150111
Author(s):  
Shengli You ◽  
Ming Zhou ◽  
Mingyue Wang ◽  
Xin Chen ◽  
Long Jin ◽  
...  

In this study, we used a four-ball friction and wear testing machine to test the tribological properties of [HPy]BF4 ionic liquids (ILs), low-layer graphene (G), and IL and G compounds (IL/G) as lubricant additives at variousconcentrations, loads, and speeds. The morphology of the wear scar was characterized by a white-light interferometer and a scanning electron microscope (SEM). The results showed that the optimal concentrations of IL and G were 0.10[Formula: see text]wt.% and 0.05[Formula: see text]wt.%, respectively. When the IL concentration was 0.10[Formula: see text]wt.%, the friction coefficient and the wear scar diameter (WSD) reduced by approximately 18% and 8%, respectively, compared to the base oil. When the concentration of G was 0.05[Formula: see text]wt.%, the friction coefficient and WSD reduced by approximately 23% and 12%, respectively, compared to the base oil. After adding the optimal concentration of the IL/G composite additive under the same test conditions, the average friction coefficient of the steel ball reduced by approximately 30%, and the average WSD reduced by approximately 18%. IL/G nanoadditives could be easily attached to the pit area on the friction surface of the steel ball, which made the contact surface of the friction pair smoother and the area of the oil film bearing the load larger, compared to those using the base oil. These two combined phenomena promoted synergistic antifriction and antiwear effects, which significantly improved the frictional performance of the base oil.


2011 ◽  
Vol 694 ◽  
pp. 219-223 ◽  
Author(s):  
Xue Mei Wu ◽  
Yuan Kang Zhou ◽  
Lǜ Yang

Palygorskite/copper nanocomposites were prepared in order to study the friction behaviour and self-repairing effect of HT200 tribopair. The friction and wear behaviors of the lubricant oil containing 4wt% nanocomposites were evaluated on an MMU-10G abrasive-wear tester. Results indicated that the average size of nanoparticles is 200nm and nanoparticle disperses homogeneously. The nanocomposites significantly improve the anti-wear performance.Wear mass loss decreases 41.7%and 63.2% compared with nano-palygoeskite and no additive.SEM and EDX examination of worn surfaces show that the incorporation of nano-copper and nano-palygorskite promote the formation of enriched films which play beneficial role for improving the wear properties.


2020 ◽  
Vol 10 ◽  
pp. 184798042094665
Author(s):  
Yong Liu ◽  
Yi Dong ◽  
Yangang Zhang ◽  
Siyuan Liu ◽  
Yu Bai

Two processes of physical liquid phase stripping and chemical redox reduction were used to obtain graphene sheets. Fourier transform infrared spectroscopy and Raman spectroscopy test methods were used to compare and analyze the structure and disorder of graphene. The obtained graphene was modified with oleic acid and stearic acid. The dispersion stability of graphene as a lubricating oil additive was investigated by natural sedimentation method and spectrophotometry. The tribological properties of the graphene dispersion were investigated by a four-ball friction and wear tester. Scanning electron microscope and energy spectrometer were used to characterize and analyze the microscopic morphology and composition of the worn surface. The results showed that the modified liquid phase stripping graphene demonstrated the best anti-wear and anti-friction properties of the dispersion, the lowest friction coefficient is 0.0677, and the average friction coefficient is reduced by about 26%.


2011 ◽  
Vol 694 ◽  
pp. 17-22 ◽  
Author(s):  
Lǜ Yang ◽  
Yi Li ◽  
Yuan Kang Zhou ◽  
Xue Mei Wu

In this paper, some Ag-carried palygorskite nanocomposites P/Ag were prepared, their silver content were 1.3%, 4.61%, 9.54% separately. To investigate the effects of the silver content on tribological properties of 45 mild steel pairs, the P/Ag carried different Ag content were used as lubricant additive and their tribological properties were tested on the MMU-10G testing machine. The wear mass loss is used to assess the anti-wear properties of different additives. The surface topographies and main elements are analyzed through SEM and EDS after running for 30 hours. The results show that the friction coefficient and the wear mass loss significantly decrease along with the increase of silver content in the P/Ag: the average friction coefficient of the P/Ag with 9.54% silver reduces about 65% as much as the one with 1.3% silver, meanwhile, the wear mass loss decreases 57% likewise. The surfaces after rubbing 30 hours, some kind of auto-restoration films that contains sort of characteristic elements such as O, Si, Mg, Al, Ag etc. are formed on the surfaces. With the help of this kind of films, the anti-wear properties of the friction pairs are finally improved. The factors that cause the improvement of anti-friction properties of the friction pairs lie in the quality and the silver content of the auto-restoration films formed on the surfaces of friction pairs.


2014 ◽  
Vol 693 ◽  
pp. 305-310 ◽  
Author(s):  
Eva Labašová

The coefficient of friction for the bronze material (CuZn25Al6) with insert graphite beds and other bronze material (CuSn12) are investigated in this paper. Friction coefficient was investigated experimentally by the testing machine Tribotestor`89 which uses the principle of the ring on ring method. The external fixed bushing was exposed to the normal load of the same size in all tests. Process of load was increased from level 50 N to 600 N during run up 300 s, after the run up the appropriate level of load was held. The internal bushing performed a rotational movement with constant sliding speed. The value of sliding speed was changed individually for every sample (v = 0.2 (0.3, 0.4) m.s-1). The forth test had a rectangular shape of sliding speed with direct current component 0.3 m.s-1 and the amplitude 0.1 m.s-1 period 300 s, the whole test took 2100 s. The obtained results reveal that friction coefficient increase with the increase of sliding speed.


2011 ◽  
Vol 328-330 ◽  
pp. 203-208 ◽  
Author(s):  
Cheng Bin Chen ◽  
Da Heng Mao ◽  
Chen Shi ◽  
Yang Liu

Nano-WS2(tungsten disulfide nanoparticles)lubricating oil additive, prepared by the nanometer WS2particulates and semi-synthetic engine base oil as raw materials, was added into Great Wall engine oil with different mass ratio. With a contrast study on these oil samples, the results show that it can improve the extreme pressure, antiwear and viscosity-temperature properties of the engine oil effectively by adding a certain amount of nano-WS2additive, and the optimal concentration is 2wt%. The oil film strength, sintering load and viscosity index of this lubricating oil is respectively 1.35 times, 1.58 times and 1.05 times as that of Great Wall engine oil. In addition, when tested under the grinding conditions of 392 N, 1450 r /min and 30 min, the diameter of worn spot reduces 0.018mm, and the average friction coefficients of friction pairs decrease 16.3%, both of which are lubricated by the oil containing nano-WS2additive. Meanwhile, the experiments testify that the tribological and viscosity-temperature properties of the nano-WS2additive are better than that of the Henkel MoS2additive.


2011 ◽  
Vol 230-232 ◽  
pp. 1079-1083
Author(s):  
Yi Zhang ◽  
Shi Jie Wang ◽  
Zhong Feng Guo ◽  
Zhong Wei Ren

Select two types of nitrile-butadiene rubber (NBR) which they are different in ingredients, under two types of crude oil medium respectively, the test is carried out on the friction testing machine. The test result shows that under the constant intermediate-low rotate speed and constant temperature, the friction coefficient decreases as the load increases; under the constant intermediate-low load and constant temperature, the friction coefficient increases as the rotate speed increases.


RSC Advances ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 4595-4603 ◽  
Author(s):  
Xinhu Wu ◽  
Kuiliang Gong ◽  
Gaiqing Zhao ◽  
Wenjing Lou ◽  
Xiaobo Wang ◽  
...  

Red phosphorus (P) was covalently attached to graphene nanosheets (Gr) using high-energy ball-milling under a nitrogen atmosphere.


Sign in / Sign up

Export Citation Format

Share Document