Frictional Performance of an Ionic Liquid/Graphene Composite Additive in Lubricating Oil

NANO ◽  
2021 ◽  
pp. 2150111
Author(s):  
Shengli You ◽  
Ming Zhou ◽  
Mingyue Wang ◽  
Xin Chen ◽  
Long Jin ◽  
...  

In this study, we used a four-ball friction and wear testing machine to test the tribological properties of [HPy]BF4 ionic liquids (ILs), low-layer graphene (G), and IL and G compounds (IL/G) as lubricant additives at variousconcentrations, loads, and speeds. The morphology of the wear scar was characterized by a white-light interferometer and a scanning electron microscope (SEM). The results showed that the optimal concentrations of IL and G were 0.10[Formula: see text]wt.% and 0.05[Formula: see text]wt.%, respectively. When the IL concentration was 0.10[Formula: see text]wt.%, the friction coefficient and the wear scar diameter (WSD) reduced by approximately 18% and 8%, respectively, compared to the base oil. When the concentration of G was 0.05[Formula: see text]wt.%, the friction coefficient and WSD reduced by approximately 23% and 12%, respectively, compared to the base oil. After adding the optimal concentration of the IL/G composite additive under the same test conditions, the average friction coefficient of the steel ball reduced by approximately 30%, and the average WSD reduced by approximately 18%. IL/G nanoadditives could be easily attached to the pit area on the friction surface of the steel ball, which made the contact surface of the friction pair smoother and the area of the oil film bearing the load larger, compared to those using the base oil. These two combined phenomena promoted synergistic antifriction and antiwear effects, which significantly improved the frictional performance of the base oil.

2020 ◽  
Vol 861 ◽  
pp. 344-348
Author(s):  
Yan Li ◽  
Lei Xia ◽  
Ren Dong Liu ◽  
Rong Sheng Sun ◽  
Jian Jun Zhang ◽  
...  

The abrasive particles in the working emulsion were characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). The wettability and lubricating properties of different emulsion samples were tested by MRS-10E four-ball friction and wear testing machine. The results show that the average particle size of the abrasive particles in the working emulsion is 2.72 μm, the smallest particle size of the abrasive particles is 0.36μm, and the largest size of the abrasive particles is 6.57μm. Furthermore, the abrasive particles can increase the internal friction of emulsions, which leads to the increasing wetting Angle. The abrasive particles cause the lubrication performance of working emulsion to decrease, which eventually leads to larger wear scar diameter and the worse morphology of wear scar on the tested ball.


2020 ◽  
Vol 866 ◽  
pp. 152-160
Author(s):  
Yang Cao ◽  
Yong Jiang Zhang ◽  
Tao Yue Yang

The oil soluble modified montmorillonite (MMT)/indium (In) composite nanoscale powders were prepared into four disperse systems by adding 1%, 2%, 3% and 4% to the base oil respectively. The friction properties of the 45 steel samples were tested by MMU-10G friction and wear testing machine, and the surface composition of the samples was analyzed by SEM and EDX. The mechanism that affects the tribological properties is compared and analyzed. The results show that the wear weight loss of the sample added with MMT/In nano powder is smaller than that in the base oil, and the average friction factor of the sample with 3% additions is 43.14% ,lower than that of the base oil, and the total wear is negative weightlessness.EDX analysis showed that the surface of the friction specimen was composed of Mg, Al and In repair membranes. The main mechanism of anti friction and friction reduction is that the composite powder will form a repair film on the surface of the friction pair during the friction process, and the repair layer can reduce the friction, compensate for the wear and play the role of resisting wear and reducing the effect of friction. With the increase of adding amount, the repair layer is gradually improved and the tribological performance is enhanced. But if the amount of addition is too high, the micro cutting and furrow effect of a large number of hard particles on the matrix and the new film will be greater than the compensation effect of the repair film, making the antiwear and antifriction properties decrease.


2016 ◽  
Vol 721 ◽  
pp. 451-455
Author(s):  
Armands Leitans ◽  
Eriks Palcevskis

In work investigated effects of zirconium oxide (ZrO2), spinel (MgAl2O4) and mullite (Al6Si2O13) nanosized powders on the base oil tribological properties. The nanosized (30-40nm) powders manufactured by plasma chemical synthesis method. Tribological experiments used on ball-on-disc type tribometer, measured coefficient of friction and determined metalic disc wear. Base oil used selectively purified mineral oil (conform SAE-20 viscosity) without any functional additives. Nanosized powders dispersed in base oil at 0.5; 1.0; 2.0; wt.%. At work cocluded, that the adition nanoparticles in base oil, possible reduced friction pair wear and friction coefficient. As the main results include spinel (MgAl2O4) nanoparticles 0.5 and 1.0 wt. % concentration ability reduced friction coeffiecient value.


2007 ◽  
Vol 127 ◽  
pp. 245-250 ◽  
Author(s):  
Mitsuyasu Yatsuzuka ◽  
Yoshihiro Oka ◽  
Akifumi Tomita ◽  
Noritaka Murata ◽  
Mitsuaki Hirota

Diamond-like carbon film (DLC) with an interlayer of plasma sprayed tungsten-carbide (WC) was prepared on an aluminum alloy substrate (A5052) by a hybrid process of plasma-based ion implantation and deposition using hydrocarbon gas. Typical thicknesses of DLC and WC films were 1 μm and 100 μm, respectively. The hardness and friction coefficient of DLC were typically 15 GPa and 0.15, respectively. The durability of DLC/WC/A5052 system was evaluated from the measurement of the friction coefficient by a ball-on-disk friction tester in which the loaded ball was drawn repeatedly across a sample and the load was increased with each traverse. For the DLC/A5052 system, which has no WC interlayer, the DLC film was broken quickly because of distortion of the substrate. For the DLC/WC/A5052 system, on the other hand, the DLC film was excellent in durability for long running. The wear rate of rubber rotor to the metal rotor was measured by a roller-pitching-type wear testing machine, showing large reduction in wear rate using DLC-coated metal rotor.


2019 ◽  
Vol 10 (1) ◽  
pp. 115 ◽  
Author(s):  
Na Wu ◽  
Ningning Hu ◽  
Jinhe Wu ◽  
Gongbo Zhou

The microscale/nanoscale lamellar-structure WS2 particles with sizes of 2 µm and 500 nm were synthesized by solid-phase reaction method and characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The synergies between microscale/nanoscale WS2 particles and ZDDP as lubricating oil additives was evaluated by means of UMT-2 tribometer at room temperature. The wear scars were examined with SEM and electron-probe micro-analyzer (EPMA). The results show that the anti-wear properties were improved and the friction coefficient was greatly decreased with the simultaneous addition of WS2 particles and ZDDP, and the largest reduction of friction coefficient was 47.2% compared with that in base oil. Moreover, the presence of ZDDP additive in the lubricant further enhances the friction-reduction and anti-wear effect of microscale/nanoscale WS2. This confirms that there is a synergistic effect between WS2 particles and ZDDP.


2011 ◽  
Vol 189-193 ◽  
pp. 231-235
Author(s):  
Yun Cai Zhao ◽  
Li Wang

The influence of MoS2 lubrication phase on the tribological properties of the Ni60A/MoS2 composite coating was conducted on UMT-2 micro-wear testing machine (USA), discussing the self-lubricating effect and mechanism. The result shows that with the increasing content of MoS2, the friction coefficient of the coating which changed with the increasing content of the MoS2 presents firstly decreases then increases, and the value reach the minimum when the quality percent of MoS2 wrapped with Nickel is 35%. Low-friction property of the Ni60A/MoS2 composite coating is due to the forming of MoS2 lubricating film in friction surface. The decreasing of the friction coefficient of the coating is in proportion to the coverage area of MoS2 lubricating film.


Author(s):  
He Qiang ◽  
Tao Wang ◽  
Hongwen Qu ◽  
Yong Zhang ◽  
Anling Li ◽  
...  

In this paper, the tribological and rheological behaviors of nanorods–Al2O3 as an additive in lithium grease at different concentrations were investigated. The morphology of the additive was determined. The improvement in the rheological properties after adding the nanorods was studied and illustrated by measuring the wear of the tested surfaces. The results showed that nanorods–Al2O3 can greatly improve the lubricating effect of grease. The grease with a 0.3 wt% content of nanorods–Al2O3 exhibited the lowest average friction coefficient and wear scar diameter. The worn steel surface was smooth and showed few furrows and grooves. Moreover, a correlation was found between the tribological and rheological properties of lithium grease. By increasing the temperature continuously, a chemical protective film was produced leading to the reduction in the friction coefficient of grease.


2011 ◽  
Vol 335-336 ◽  
pp. 487-490
Author(s):  
Shun Xing Wang ◽  
Xu Rui Gao

The tribological property of nano-Cu as additive in lubricating oil was investigated on a stock-on-ring testing machine. Friction coefficient and wear mass loss were discussed in order to study tribological property. And the worn surfaces were characterized by scanning electronic microscopy(SEM). Then wear and lubricating mechanism were discussed. The results show that the wear and friction properties of nano-Cu as lubricating oil additive are excellent. And when the adding quantity is 0.04% and 0.03%(mass fraction), the friction coefficient and wear mass loss is best, respectively.


2013 ◽  
Vol 572 ◽  
pp. 397-400
Author(s):  
Shao Gang Liu ◽  
Li Quan Li ◽  
Jin Li Wang

The influence of the oil supply, nozzle type, air supply, the performance of sliding friction element under the lubrication preloads were investigated by measuring the element’s temperature and friction coefficient based on the M2000-A friction wear testing machine. When the load, rotating speed and air supply is at 1500N, 210rpm and 2.25 m3/h level respectively, as the oil supply is increased, the temperature rises and friction coefficient decreases. The temperature rise decreases monotonically. The friction coefficient rises monotonically with the air supply increases when the air supply is less than 2.4m3/h, but when the air supply is more than 2.4m3/h, the friction coefficient decreases monotonically. Furthermore, when the oil supply is reached 15ml/h, they remain almost unchanged regardless of direct nozzle and conical nozzle. Nevertheless, the direct nozzle is more suitable than the conical nozzle in oil-air lubrication of the sliding friction pairs .


2020 ◽  
Vol 69 (4) ◽  
pp. 15-41
Author(s):  
Arkadiusz Chodkiewicz ◽  
Tadeusz Kałdoński

The article presents the results of tests on the lubricity properties of SN150 base oil containing hexagonal boron nitride (h-BN) of different granulation. The boron nitride with a particle size below 100 nm and the second one with a particle size below 25 μm were used. The lubricity tests were carried out on a four-ball apparatus. The methodology of these tests was determined on the basis of the normative document PN-EN ISO 20623: 2018-02, which contains the following parameters characterising the lubricity: initial seizure load ISL [N], weld load WL [N], load-wear index LWI [N], mean wear scar diameter MWSD [mm] obtained in a long duration wear test under a specified load; wear-load curve, i.e., the dependence of the mean wear scar diameter on the load, was also performed. Tests were also carried out to check the influence of selected surfactants on the sedimentation process of hexagonal boron nitride in the SN150 mineral base oil. Based on the conducted research and their analysis, it was found that hexagonal boron nitride has a positive effect on the lubricating properties of the base oil; better results were obtained for the boron nano-nitride with a particle size below 100 nm. It was also found that the problem of sedimentation of the solid particles of hexagonal boron nitride was solved by the addition of succinimide dispersant. Keywords: tribology, lubricity, boron nitride, surfactants, sedimentation


Sign in / Sign up

Export Citation Format

Share Document