Stochastic Optimization of Empty Container Repositioning of Sea Carriage

2011 ◽  
Vol 340 ◽  
pp. 324-330
Author(s):  
Bin Wang ◽  
Tao Yang

To improve the efficiency of empty container repositioning for a shipping company, a stochastic optimization model of empty container repositioning of sea carriage was established by chance-constrained programming. The objective function was to minimize the cost of empty container repositioning including shipping, rening and shortage cost. In the model, shipping cost was decided by the number of ship used for empty container repositioning. The constraints of the model included meeting the need of empty containers, limit to the number of empty containers provided and the capacity of shipping. The numbers of empty containers required are stochastic. The stochastis model was transferred to an integer programming one. Lingo9.0 was used to solve the model and simulation was done under varied parameters to get a good shipping strategy. The results show that the model can provide an effective program of empty container repositioning for a shipping company and it is a good way to raise shipping efficiency.

2012 ◽  
Vol 220-223 ◽  
pp. 2678-2683
Author(s):  
Bin Wang ◽  
Tao Yang

The paper dose research about the optimization of container shipping of sea –carriage for meeting the goods transport requirement by use of integer programming. Both laden and empty containers are combined into a system. In particular, the effect of special laden container shipping capacity on the shipping plan is investigated. In the model, the objective function is to maximize the total profit of container shipping. The profit caused by laden container shipping minus the cost caused by both laden and empty container shipping equal to the total profit. The constraints to the model include meeting the need of both laden and empty containers, shipping limit to both common and special laden containers , the number of empty container supported. Lingo9.0 is used to solve the model and shipping methods in varied parameters are shown by simulation. The aim of the paper is to provide a reasonable plan of container shipping of sea-carriage, so the container shipping cost of a shipping company can be reduced and the its profit made by container shipping are maximized.


2013 ◽  
Vol 411-414 ◽  
pp. 2715-2720
Author(s):  
Bin Wang ◽  
Tao Yang

The paper dose research about the optimization of container shipping of sea carriage for meeting the goods transport requirement by use of stochastic programming. Both laden and empty containers are combined into a system. In particular, the effect of special laden container shipping capacity on the shipping plan is investigated. In the model, the objective function is to maximize the total profit of container shipping. The profit caused by laden container shipping minus the cost caused by both laden and empty container shipping equal to the total profit. The constraints to the model include meeting the need of both laden and empty containers, shipping limit to both common and special laden containers, the number of empty container supported. The number of empty containers is stochastic and the model is transmitted to an integer programming. Lingo9.0 is used to solve the model and shipping methods in varied parameters are shown by simulation. The aim of the paper is to provide a reasonable plan of container shipping of sea-carriage, so the container shipping cost of a shipping company can be reduced and the its profit made by container shipping are maximized.


Symmetry ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 706
Author(s):  
Lei Xing ◽  
Qi Xu ◽  
Jiaxin Cai ◽  
Zhihong Jin

In order to reduce the total cost of empty container repositioning, a multi-period empty container repositioning optimization model of the China Railway Express was established by using distributed robust chance-constrained programming based on partial information such as mean and variance of demand. This established model considered sea-land intermodal transportation, uncertain empty container demand and foldable containers. To simplify the model, the distributed robust chance constraints were transformed into equivalent ones that could be easily solved, and the empty container demands were determined. Numerical experiments were carried out to analyze the influence of different parameters on the total cost. The results showed that the total cost could be greatly reduced by sea-land intermodal transportation. Using foldable containers could reduce the total cost of empty container repositioning. With the improvement of service level, the numbers of empty container repositioning increased owing to the distributional robust chance constraints. When standard and foldable containers were used simultaneously, the total cost could be greatly reduced by appropriately using foldable containers under three different supply–demand relationships of containers. The optimization results may provide a greatly feasible reference for the decision makers of the China Railway Express.


2017 ◽  
Vol 2 (2) ◽  
pp. 126-141 ◽  
Author(s):  
Stephanie Finke ◽  
Herbert Kotzab

Purpose The purpose of this paper is to figure out in which way a hinterland-based inland depot model can help a shipping company in solving the empty container problem at a regional level. The repositioning of empty containers is a very expensive operation that does not generate profits. Consequently, it is very important to provide an efficient empty container management. Design/methodology/approach In this paper, the empty container problem is discussed at a regional repositioning level. For solving this problem, a mixed-integer linear optimization model is developed and validated by using the German hinterland as a case. Findings The findings show that the hinterland-based solution is able to reduce the total system costs by 40 per cent. In addition, total of truck kilometres could be reduced by more than 30 per cent too. Research limitations/implications This research is based on German data only. Originality/value This paper closes the gap in empty container repositioning research by looking at the hinterland dimension from a single shipping company point of view.


2021 ◽  
Author(s):  
Jiaxin Cai ◽  
Yubo Li ◽  
Yandong Yin ◽  
Xiaohan Wang ◽  
Zhihong Jin

Abstract Within the area of regional port clusters, this paper establishes a multi-period mixed integer programming model to optimize the empty container repositioning between public hinterlands and ports, comprehensively considering the quantitative and periodic inventory control strategy. By using Markov decision process combined with dynamic programming method, this paper dynamically optimizes the empty container inventory threshold (D;U) under quantitative strategy and S under periodical strategy at each port within the regional port clusters. On this basis, this paper optimizes the empty container repositioning scheme between public hinterlands and ports. Meanwhile, Liaoning coastal regional port cluster and its northeast hinterland are selected as the objects to solve this model and the results show that the total cost of shipping company can be saved by 14.16% and 11.92% respec- tively by the quantitative and periodical inventory control strategy. Selecting the quantity of public hinterland terminals, the empty container demand of public hinterland terminals and ports, the inventory threshold of empty containers and other factors, this paper carries on the sensitivity analysis. This paper validates inventory control strategy can weaken the shipping company in the influence of the external environment changes. And the quantitativeinventory control strategy can reduce the total cost value to a greater extent and more effective in cost control than periodical strategy.


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Shaorui Zhou ◽  
Xiaopo Zhuo ◽  
Zhiming Chen ◽  
Yi Tao

A common challenge faced by liner operators in practice is to effectively allocate empty containers now in a way that minimizes the expectation of costs and reduces inefficiencies in the future with uncertainty. To incorporate uncertainties in the operational model, we formulate a two-stage stochastic programming model for the stochastic empty container repositioning (ECR) problem. This paper proposes a separable piecewise linear learning algorithm (SPELL) to approximate the expected cost function. The core of SPELL involves learning steps that provide information for updating the expected cost function adaptively through a sequence of piecewise linear separable approximations. Moreover, SPELL can utilize the network structure of the ECR problem and does not require any information about the distribution of the uncertain parameters. For the two-stage stochastic programs, we prove the convergence of SPELL. Computational results show that SPELL performs well in terms of operating costs. When the scale of the problem is very large and the dimensionality of the problem is increased, SPELL continues to provide consistent performance very efficiently and exhibits excellent convergence performance.


Author(s):  
Bo Du ◽  
Hao Hu ◽  
Jie Zhang ◽  
Meng Meng

This paper studies the empty container repositioning (ECR) problem considering the exchange of slots and empty containers among liner shipping companies. It is common for an individual shipping company to seek an optimal solution for ECR and cargo routing to maximize its own benefits. To achieve cooperation among shipping companies, a multi-stage solution strategy is proposed. With the inverse optimization technique, the guide leasing prices of slots and empty containers among shipping companies are derived considering the schedule of vessels and cargo routing. Based on the guide leasing price, a cooperative model is formulated to minimize the total cost, which includes the transportation cost for laden containers, the inventory holding cost, the container leasing cost, and the repositioning cost. All the involved shipping companies are expected to follow the best solution of ECR and cargo routing to achieve a cooperative and stable optimum. A real-world shipping network operated by three liner shipping companies is used as a case study with promising numerical results.


2021 ◽  
Vol 13 (9) ◽  
pp. 4730
Author(s):  
Zirui Liang ◽  
Ryuichi Shibasaki ◽  
Yuji Hoshino

This study considers the empty container repositioning problem of shipping companies that use standard and 3-in-1 foldable containers with more advanced designs. A mathematical model is developed to compare the total management costs of container repositioning of various patterns in different cargo shipping demand scenarios. Numerous scenario analyses and simulations of empty container repositioning were conducted, focusing on a liner shipping service in the Pacific Islands where empty containers are likely to be present because of the imbalance between inbound and outbound flows of containers, including static analysis and consecutive analysis with demand fluctuation in different approaches. Results show that with the introduction of foldable containers, depending on the growth rate of container cargo shipping demand, the total management costs of empty container repositioning can be reduced. However, introducing a large number of foldable containers may increase the total management costs of container repositioning. Moreover, the cost reduction effect of adding another containership increases in cases where future cargo shipping demand increases substantially. Furthermore, the introduction of foldable containers not only effectively reduces the management costs of empty containers, but also makes costs more stable and predictable.


2014 ◽  
Vol 5 (1) ◽  
pp. 1-23 ◽  
Author(s):  
Hossein Khakbaz ◽  
Jyotirmoyee Bhattacharjya

Maritime shipping containers are important to a number of different industries as they facilitate the reduction of transportation costs. To address the needs of shippers, empty containers need to be repositioned globally between seaports. Since the cost of empty container repositioning (ECR) constitutes a significant element of the total cost of running a global container fleet operation, the problem has been receiving increasing attention from scholars. The diversity of this literature necessitates the development an appropriate classification scheme to identify trends, gaps, and directions for future research. This paper reviews publications on maritime ECR over the last two decades and examines such trends and potential research directions.


Sign in / Sign up

Export Citation Format

Share Document