Degradation Kinetics and Mechanics of Methylene Blue by Complex Ultraviolet and Hydrogen Peroxide Process

2011 ◽  
Vol 356-360 ◽  
pp. 1066-1069
Author(s):  
Hang Xu ◽  
Qiang Tang ◽  
Ya Na Liu ◽  
Yong Jiang ◽  
Hong Yan Tang

Hyperbolic model could be established to describe the degradation performance of Methylene Blue (MB) using UV/H2O2 process. The effects of initial H2O2 dosage on MB removal, instant ▪OH concentration and reaction rate were investigated. The results show that the optimal H2O2 dosage is 13.24 mM and after 50min the MB removal is around 85%. The MB degradation process is followed the hyperbolic model which can calculate instant ▪OH concentration and reaction rate.

2001 ◽  
Vol 3 (4) ◽  
pp. 193-199 ◽  
Author(s):  
Paola A. Babay ◽  
Carina A. Emilio ◽  
Rosana E. Ferreyra ◽  
Eduardo A. Gautier ◽  
Raquel T. Gettar ◽  
...  

The photocatalytic degradationof EDTA overTiO2has been analyzed to establish the influence of oxidants on the reaction rate, the nature of the intermediates and the kinetic regime. Degussa P-25 suspensions containing EDTA at initial pH 3 in different concentrations were irradiated under near UV light. A Langmuirian behavior was observed.O2at saturation concentrations was found to be crucial for EDTA degradation. The rapid depletion of EDTA was not accompanied by a corresponding TOC decrease, indicating formation of refractory intermediates. An enhancement in TOC reduction could be achieved by keeping pH constant or by hydrogen peroxide addition. Addition of Fe(III) caused a remarkable increase on the initial rate of EDTA consumption and also on TOC decrease. Changes in both parameters clearly increased under the simultaneous addition of Fe(III) andH2O2, until limiting values.Some of the possible intermediates of EDTA degradation were evaluated in the filtered solution. So far, glycine, ethylenediamine, ammonium, formaldehyde, and formic, iminodiacetic, oxalic, oxamic, glycolic and glyoxylic acids have been identified in different proportions, depending on the experimental conditions. Different degradationpathways are proposed. Inthe presence of Fe(III), photo-Fenton reactions would contribute also to the degradation process.


Membranes ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 60 ◽  
Author(s):  
Anastassiya A. Mashentseva ◽  
Murat Barsbay ◽  
Nurgulim A. Aimanova ◽  
Maxim V. Zdorovets

In this study, the use of composite track-etched membranes (TeMs) based on polyethylene terephthalate (PET) and electrolessly deposited silver microtubes (MTs) for the decomposition of toxic phenothiazine cationic dye, methylene blue (MB), under visible light was investigated. The structure and composition of the composite membranes were elucidated by scanning electron microscopy, energy dispersive spectroscopy, and X-ray diffraction technique. Under visible light irradiation, composite membrane with embedded silver MTs (Ag/PET) displayed high photocatalytic efficiency. The effects of various parameters such as initial dye concentration, temperature, and sample exposure time on the photocatalytic degradation process were studied. The decomposition reaction of MB was found to follow the Langmuir–Hinshelwood mechanism and a pseudo-first-order kinetic model. The degradation kinetics of MB accelerated with increasing temperature and activation energy, Ea, was calculated to be 20.6 kJ/mol. The reusability of the catalyst was also investigated for 11 consecutive runs without any activation and regeneration procedures. The Ag/PET composite performed at high degradation efficiency of over 68% after 11 consecutive uses.


TAPPI Journal ◽  
2018 ◽  
Vol 17 (11) ◽  
pp. 601-607
Author(s):  
Alan Rudie ◽  
Peter Hart

The use of 50% concentration and 10% concentration hydrogen peroxide were evaluated for chemical and mechanical pulp bleach plants at storage and at point of use. Several dangerous occurrences have been documented when the supply of 50% peroxide going into the pulping process was not stopped during a process failure. Startup conditions and leaking block valves during maintenance outages have also contributed to explosions. Although hazardous events have occurred, 50% peroxide can be stored safely with proper precautions and engineering controls. For point of use in a chemical bleach plant, it is recommended to dilute the peroxide to 10% prior to application, because risk does not outweigh the benefit. For point of use in a mechanical bleach plant, it is recommended to use 50% peroxide going into a bleach liquor mixing system that includes the other chemicals used to maintain the brightening reaction rate. When 50% peroxide is used, it is critical that proper engineering controls are used to mitigate any risks.


Silicon ◽  
2021 ◽  
Author(s):  
Dzoujo T. Hermann ◽  
Sylvain Tome ◽  
Victor O. Shikuku ◽  
Jean B. Tchuigwa ◽  
Alex Spieß ◽  
...  

1980 ◽  
Vol 188 (2) ◽  
pp. 535-540 ◽  
Author(s):  
A Tomoda ◽  
M Ida ◽  
A Tsuji ◽  
Y Yoneyama

The time course of methaemoglobin reduction in human erythrocytes treated with nitrite was studied at pH 7.4, 37 degrees C, in the presence or absence of Methylene Blue, and the changes in methaemoglobin, intermediate haemoglobins and oxyhaemoglobin during the reaction were analysed by isoelectric-focusing on Ampholine/polyacrylamide-gel plates. In both cases, with or without the dye, the intermediate haemoglobins were found to be present at (alpha 3+beta 2+)2 and (alpha 2+beta 3+)2 valency hybrids from their characteristic position on electrophoresis, but amounts changed consecutively with time. The amount of (alpha 3+beta 2+)2 was always greater than that of the (alpha 2+beta 3+)2 valency hybrid. This result is explained by the differences in redox potentials between alpha- and beta-chains in methaemoglobin tetramer. It was concluded that methaemoglobin was reduced in human erythrocytes through these two different pats: methaemoglobin leads to k+3 (alpha 2+beta 3+)2 leads to k+3 oxyhaemoglobin. The reaction rate constants k'+1 (= k+1+k+3) and k'+2(=k+2+k+4) were estimated from the changes in each component methaemoglobin, intermediate haemoglobins [(alpha 3+beta 2+)2+(alpha 2+beta 3+)2] and oxyhaemoglobin.


e-Polymers ◽  
2010 ◽  
Vol 10 (1) ◽  
Author(s):  
Jiangbo Wang ◽  
Zhong Xin

AbstractThe thermal degradation behaviors of PC/PMPSQ (polymethylphenylsilsesquioxane) systems were investigated by thermogravimetric analysis (TGA) under non-isothermal conditions in nitrogen atmosphere. During non-isothermal degradation, Kissinger and Flynn-Wall-Ozawa methods were used to analyze the thermal degradation process. The results showed that a remarkable decrease in activation energy ( E ) was observed in the early and middle stages of thermal degradation in the presence of PMPSQ, which indicated that the addition of PMPSQ promoted the thermal degradation of PC. Flynn-Wall-Ozawa method further revealed that PMPSQ significantly increased the activation energy of PC thermal degradation in the final stage, which illustrated that the PMPSQ stabilized the char residues and improved the flame retardancy of PC in the final period of thermal degradation process


2017 ◽  
Vol 30 (7) ◽  
pp. 787-793 ◽  
Author(s):  
Xu Su ◽  
Yong Xu ◽  
Linshuang Li ◽  
Chaoran Song

Two kinds of thermoplastic polyimides (PIs) were synthesized via a two-step method with 2,2-bis[4-(4-aminophenoxy)phenyl]propane (BAPP), 4,4′-oxydianiline (ODA) diamine, and 3,3′,4,4′-benzophenonetetracarboxylic dianhydride (BTDA), and their thermal degradation kinetics was studied by thermogravimetric analysis at different heating rates under nitrogen. Derivative thermogravimetric analysis curves indicated a simple, single-stage degradation process in PI BTDA-BAPP and a two-stage degradation process in PI BTDA-ODA-BAPP. The activation energies ( Eas) of the thermal degradation reaction were determined by the Flynn–Wall–Ozawa and Kissinger–Akahira–Sunose methods without a knowledge of the kinetic reaction mechanism. By comparing the values of Ea and weight loss temperatures, it was demonstrated that the thermal stability of PI BTDA-ODA-BAPP was superior to that of PI BTDA-BAPP.


Author(s):  
Juraj Michálek ◽  
Kseniya Domnina ◽  
Veronika Kvorková ◽  
Kristína Šefčovičová ◽  
Klaudia Mončeková ◽  
...  

Abstract The usage of the low-cost catalysts for methylene blue removal from wastewater was investigated. Heterogeneous Fenton-like process consists of the use of a hydrogen peroxide solution, and an iron-rich catalyst, red mud and black nickel mud were used for that purpose. The factors such as the catalyst dose and the hydrogen peroxide solution volume were monitored. The results of experiments showed that the degradation of methylene blue dye in Fenton-like oxidation process using selected catalysts can be described by a pseudo-second-order kinetic model. The highest dye removal efficiency (87.15 %) was achieved using the black nickel mud catalyst after 30 minutes of reaction.


Author(s):  
Kouakou Yao Urbain ◽  
Kambiré Ollo ◽  
Gnonsoro Urbain Paul ◽  
Eroi N’goran Sévérin ◽  
Trokourey Albert

Aims: The pollution of the environment by organic dyes in water is a matter of great concern. Wastewater containing dyes is difficult to treat by conventional wastewater treatment methods such as coagulation, ozonation, biological treatment, etc. This is why the implementation of an effective method by not generating pollutants secondary is necessary. The objective of this work is to study the degradation of remazol black, an azo dye, by the coupling of hydrogen peroxide - molybdenum oxide nanoparticle. The nanoparticles were synthesized by the aqueous sol-gel method using a reflux assembly. Study Design: Random design. Methodology: The nanoparticles were synthesized by the aqueous sol-gel method using a reflux assembly and then characterized by X-ray diffraction and using software origin to determine the particles size by Scherrer's formula. The influence of hydrogen peroxide, molybdenum oxide and hydrogen peroxide / molybdenum oxide coupling, and the degradation kinetics of remazol black were studied. We also studied the influence of the pH of the solution, the mass of molybdenum nanoparticles and the concentration of remazol black on the dye degradation process. Results: The results showed that the synthesized oxide is ammonium molybdenum trioxide NH3(MoO3)3) with a hexagonal structure and size 22.79 nm. The study of the catalytic effect revealed a degradation rate of 17%, 0.83% and 42% respectively for H2O2, NH3(MoO3)3 and the coupling NH3(MoO3)3/H2O2. The study also showed that the degradation of remazol black by the couple NH3(MoO3)3 /H2O2 is better at pH = 4 and for a mass of nanoparticles of 400 mg. This degradation kinetics are pseudo 1st order. In addition, the degradation rate decreases when the concentration of remazol black increases. The efficiency of the coupling (NH3(MoO3)3 / H2O2 showed at ambient temperature, that it was possible to remove about 60% of the initial color of remazol black from the water in a batch reaction. Conclusion: The reflux method makes it possible to synthesize molybdenum nanoparticles. The molybdenum oxide hetero-Fenton process is effective in removing remazol black dye from water.


Sign in / Sign up

Export Citation Format

Share Document