Recovery a Refractory Oolitic Hematite by Magnetization Roasting and Magnetic Separation

2011 ◽  
Vol 361-363 ◽  
pp. 305-310 ◽  
Author(s):  
Chao Guo ◽  
Hui Wang ◽  
Jian Gang Fu ◽  
Kai Da Chen

Orthogonal test was carried out to investigate effects of multiple factors during the magnetization roasting-magnetic separation process as follow: roasting temperature, time, ratio of reducing agent and magnetic field intensity. Significant order of those factors on grade of iron concentrate is obtained, and opportune condition for magnetic roasting is determined. As the condition that roasting temperature is 850°C, time is 40min, ratio of reducing agent is mcoal/more=12% and magnetic field intensity is 1800Gs, iron ore concentrate whose grade and recovery are 56.32% and 94.03%, respectively, is obtained. At last, through closed-circuit test including magnetization roasting, magnetic separation and reverse flotation, final result is obtained that iron concentrate with phosphorus and silicon are 0.18% and 2.63%, respectively, and its iron grade and recovery are 60.47% and 80.1%, respectively.

Minerals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 352 ◽  
Author(s):  
Junhui Xiao ◽  
Wei Ding ◽  
Yang Peng ◽  
Tao Chen ◽  
Kai Zou ◽  
...  

In this study, segregation roasting and magnetic separation are used to extract nickel from a garnierite laterite ore. The garnierite laterite ore containing 0.72% Ni, 0.029% Co, 8.65% Fe, 29.66% MgO, and 37.86% SiO2 was collected in the Mojiang area of China. Garnierite was the Ni-bearing mineral; the other main minerals were potash feldspar, forsterite, tremolite, halloysite, quartz, and kaolinite in the garnierite laterite ore. The iron phase transformations show that nickel is transformed from (Ni,Mg)O·SiO2·nH2O to a new nickel mineral phase dominated by [Ni]Fe solid solution; and iron changed from Fe2O3 and FeOOH to a new iron mineral phase dominated by metal Fe and Fe3O4 after segregation roasting. Ferronickel concentrate with Ni of 16.16%, Fe of 73.67%, and nickel recovery of 90.33% was obtained under the comprehensive conditions used: A roasting temperature of 1100 °C, a roasting time of 90 min, a calcium chloride dosage of 15%, an iron concentrate dosage of 30%, a coke dosage of 15%, a coke size of −1 + 0.5 mm, a magnetic separation grinding fineness of <45 μm occupying 90%, and a magnetic separation magnetic field intensity of H = 0.10 T. The main minerals in ferronickel concentrate are Fe, [Ni]Fe, Fe3O4, and a small amount of gangue minerals, such as CaO·SiO2 and CaO·Al2O3·SiO2.


2012 ◽  
Vol 454 ◽  
pp. 227-230
Author(s):  
Lin Li ◽  
Xian Jun Lu ◽  
Jun Qiu

The results show that under the condition of grinding fineness(-200 mesh content) of 52.88% and magnetic field intensity of 0.2T, the index of concentrate yield is 13.25%, concentrate grade is 58.75% and concentrate recovery is 57.32% with preconcentration technology by magnetic separation.


2014 ◽  
Vol 644-650 ◽  
pp. 5447-5450
Author(s):  
Peng Xiang Zhang ◽  
Xing Long Zhou ◽  
Chang Cheng Shang Guan ◽  
Xu Bai

Based on the XRF analysis of red mud, the Muti-element analysis of red mud and the phase analysis of iron, high gradient magnetic separators were used for recovering iron from red mud. Magnetic field intensity, magnetic media, velocity of flow and frequency were researched. Magnetic field intensity as 0.85T, Magnetic media as 2.0mm, velocity of flow as 8L/min and frequency of stroke as 200/min, at this condition, the grade of iron concentrate is 44.56% and the recovery is 73.69%.


Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 563
Author(s):  
Junhui Xiao ◽  
Kai Zou ◽  
Tao Chen ◽  
Wenliang Xiong ◽  
Bing Deng

In this research, the coarse manganese concentrate was collected from a manganese ore concentrator in Tongren of China, and the contents of manganese and iron in coarse manganese concentrate were 28.63% and 18.65%, respectively. The majority of the minerals in coarse manganese concentrate occur in rhodochrosite, limonite, quartz, olivine, etc. Calcium chloride, calcium hypochlorite, coke, and coarse manganese concentrate were placed in a roasting furnace to conduct segregation roasting, which resulted in a partial chlorination reaction of iron to produce FeCl3, ferric chloride reduced to metallic iron and adsorbed onto the coke, and rhodochrosite broken down into manganese oxide. Iron was extracted from the roasted ore using low-intensity magnetic separation, and manganese was further extracted from the low-intensity magnetic separation tailings by high-intensity magnetic separation. The test results showed that iron concentrate with an iron grade of 78.63% and iron recovery of 83.60%, and manganese concentrate with a manganese grade of 54.04% and manganese recovery of 94.82% were obtained under the following optimal conditions: roasting temperature of 1273 K, roasting time of 60 min, calcium chloride dosage of 10%, calcium hypochlorite dosage of 5%, coke dosage of 10%, coke size of −1 mm, grinding fineness of −0.06 mm occupying 90%, low-intensity magnetic field intensity of 0.14 T, and high-intensity magnetic field intensity of 0.65 T. Most minerals in the iron concentrate were Fe, Fe3O4, and a small amount of SiO2 and CaSiO3; the main minerals in the manganese were MnO, and a small amount of Fe3O4, SiO2, and CaSiO3. The thermodynamic calculation results are in good agreement with the test results.


2011 ◽  
Vol 695 ◽  
pp. 421-424 ◽  
Author(s):  
Zhao Hui Zhang ◽  
Bai Long Liu ◽  
Hong Zhou Ma ◽  
Wu Qiang Wei

According to the properties of cyanide tailing from Lingbao, the quantitative analysis and phase analysis were chosen to define the chemical composition of the tailing and separability of Fe from cyanide tailing was investigated. The impacts of parameters on the recovery of Fe were probed to determine the optimal iron separation technological flow. The result indicated that the iron ore concentrate containing 62.69% Fe can been obtained by wet and weak magnetic separation (one roughing and two cleaning) under the optimum conditions of stirring intensity 1800r/min, stirring time 15min, roughing magnetic field intensity 63.68KA/m, and cleaning magnetic field intensity of Ⅰand Ⅱ47.76 and 39.80 KA/m separately, and a recovery ratio reached 81.78%.


2021 ◽  
Vol 19 (1) ◽  
pp. 128-137
Author(s):  
Bing Luo ◽  
Tongjiang Peng ◽  
Hongjuan Sun

Abstract To comprehensively reuse copper ore tailings, the recovery of γ-Fe2O3 from magnetic roasted slag after sulfur release from copper ore tailings followed by magnetic separation is performed. In this work, after analysis of chemical composition and mineralogical phase composition, the effects of parameters in both magnetization roasting and magnetic separation process with respect to roasting temperature, residence time, airflow, particle size distribution, magnetic field intensity, and the ratio of sodium dodecyl sulfonate to roasted slag were investigated. Under optimum parameters, a great number of γ-Fe2O3 is recycled with a grade of 66.86% and a yield rate of 67.21%. Meanwhile, the microstructure, phase transformation and magnetic property of copper ore tailings, roasted slag, and magnetic concentrate are carried out.


2008 ◽  
Vol 8 (3) ◽  
pp. 501-507 ◽  
Author(s):  
G. Prattes ◽  
K. Schwingenschuh ◽  
H. U. Eichelberger ◽  
W. Magnes ◽  
M. Boudjada ◽  
...  

Abstract. We present the results of ground-based Ultra Low Frequency (ULF) magnetic field measurements observed from June to August 2004 during the Bovec earthquake on 12 July 2004. Further we give information about the seismic activity in the local observatory region for an extended time span 2004 and 2005. ULF magnetic field data are provided by the South European Geomagnetic Array (SEGMA) where the experience and heritage from the CHInese MAGnetometer (CHIMAG) fluxgate magnetometer comes to application. The intensities of the horizontal H and vertical Z magnetic field and the polarization ratio R of the vertical and horizontal magnetic field intensity are analyzed taking into consideration three SEGMA observatories located at different close distances and directions from the earthquake epicenter. We observed a significant increase of high polarization ratios during strong seismic activity at the observatory nearest to the Bovec earthquake epicenter. Apart from indirect ionospheric effects electromagnetic noise could be emitted in the lithosphere due to tectonic effects in the earthquake focus region causing anomalies of the vertical magnetic field intensity. Assuming that the measured vertical magnetic field intensities are of lithospheric origin, we roughly estimate the amplitude of electromagnetic noise in the Earths crust considering an average electrical conductivity of <σ>=10−3 S/m and a certain distance of the observatory to the earthquake epicenter.


Sign in / Sign up

Export Citation Format

Share Document