Experiment Research on Air Flow Rate Measurement Using Tracer Gas Method

2011 ◽  
Vol 374-377 ◽  
pp. 520-523
Author(s):  
Xian Yang Zeng ◽  
Zuo He Chi ◽  
Ming Guang Zheng ◽  
Gong Gang Sun ◽  
Guang Xue Zhang ◽  
...  

Experiment research on the air flow rate measurement using tracer gas method in a 300mm internal diameter and 90° elbow duct are presented, which CO and air are selected as tracer gas and gas stream. Results show that the relative errors between the flow rate measured by tracer gas method and turbine flowmeter are varied in the range of -2.15%~1.69% when the injection point is upstream of the elbow on 7D~13D (D is the internal diameter of the duct), and the sampling point is downstream of the elbow on 10D~14D. The further distances of the injection point and sampling point are apart, the less relative errors of the gas flow rate measured by tracer gas method and turbine flowmeter are made. The injection flow rate of tracer gas should be matched with the gas flow rate in the duct. It is a simple and effective method that gas flowmeter online calibration with tracer gas method on the large diameter industrial gas pipeline transportation.

2021 ◽  
pp. 13-19
Author(s):  
Zhanat А. Dayev ◽  
Gulzhan E. Shopanova ◽  
Bakytgul А. Toksanbaeva

The article deals with one of the important tasks of modern flow measurement, which is related to the measurement of the flow rate and the amount of wet gas. This task becomes especially important when it becomes necessary to obtain information about the separate amount of the dry part of the gas that is contained in the form of a mixture in the wet gas stream. The paper presents the principle of operation and structure of the invariant system for measuring the flow rate of wet gas, which is based on the combined use of differential pressure flowmeters and Coriolis flowmeters. The operation of the invariant wet gas flow rate measurement system is based on the simultaneous application of the multichannel principle and the partial flow measurement method. Coriolis flowmeters and the differential pressure flowmeter are used as the main elements of the system. The proposed measurement system does not offer applications for gases with abundant drip humidity. The article provides information about the test results of the proposed invariant system. The estimation of the metrological characteristics of the invariant system when measuring the flow rate of wet gas is given. The obtained test results of the invariant wet gas flow rate measurement system are relevant for natural gas production, transportation, and storage facilities.


Author(s):  
M. Yu. Liakh ◽  
A. V. Akulich ◽  
P. S. Grinchuk

A model for the process of glass microsphere production in a recuperative gas-flame reactor was proposed. Based on the described mathematical model of heating and motion of particles in a high-temperature gas stream, which takes into account conjugate heat exchange between the reactor’s operating environment and the recuperator, the appropriate processes were modeled and optimized by geometric and regime parameters. The particle location time in the reactor at a temperature above 1400 °С, which was determined by data of differential scanning colorimetry, was used as an optimized charac- С, which was determined by data of differential scanning colorimetry, was used as an optimized charac- , which was determined by data of differential scanning colorimetry, was used as an optimized characteristic.As a result of optimization calculations, the reactor parameters (diameter and height, natural gas flow rate, air flow rate in the recuperator) were found, as well as regime parameters (diameter and flow rate of glass particles), under which microspheres can be formed. The information obtained can be a basis for designing an effective gas-flame reactor for production of glass microspheres.


Author(s):  
Enrico Munari ◽  
Michele Pinelli

Nowadays, wet gas flow rate measurement is still a challenge for experimental investigators and it is becoming an even more important issue to overcome in the turbomachinery sector as well, due to the increasing trend of wet compression applications in industry. The requirement to determine gas turbine performance when processing a wet gas leads to the need to understand certain phenomena, such as type of liquid flow re-distribution, and errors introduced when the mass flow rate measurement of a two-phase gas is attempted. Unfortunately, this measurement is often affected by the presence of liquid. Literature does not offer a unique definition of the term wet gas, although it is recognized that a wet gas can generally be defined as a two-phase gas in which the liquid percentage is lower than the gas one. This paper aims to collect and describe the main works present in literature in order to clarify i) the most used parameters that describe the types of wet gas, and ii) the types of errors and flow patterns which occur in different types of applications, in terms of pressure, percentage of liquid, Reynolds number, etc. Therefore, this literature review offers a comprehensive description of the possible effects of liquid presence in a wet gas and, and an in-depth analysis of the limitations and beneficial effects of current single-phase flow rate sensors in order to identify the best solutions, and empirical corrections available in literature to overcome this challenge.


Author(s):  
Wenqi Zhong ◽  
Mingyao Zhang ◽  
Baosheng Jin ◽  
Rui Xiao

Steady-state tracer gas measurements were carried out to study the gas mixing behaviors in a spout-fluid bed with a cross section of 0.3 m x 0.03 m and height of 2 m. Two different tracer gases were simultaneously injected, one was injected into the spouting gas flow and the other was injected into the fluidizing gas flow. Radial tracer gas concentrations at various bed elevations under different flow patterns were measured. The mechanism of gas mixing was discussed based on the racer gas concentrations and the flow patterns recorded by a high-resolution digital CCD camera. It was found that gas mixing in spout-fluid beds was due to both convection and dispersion. A three-region mixing model was developed to describe the gas mixing in the spout-fluid bed. The spout jet region and the boundary region were modeled with a mass transfer model; the annular region was modeled with a dispersion model. Effects of spouting gas and fluidizing gas flow rate on the gas exchange between the spout jet and the annular dense region, and the gas dispersion in the annular dense region were examined with flow patterns. The results showed that increase in spouting gas velocity and fluidizing gas flow rate could both promote the gas mixing in spout-fluid beds. The gas-solid flow pattern transited from internal jet to spouting to spout-fluidizing, and the gases were better mixed. But the gases became poorly mixed when the flow pattern transited from stable flow to instable flow.


2019 ◽  
Vol 100 ◽  
pp. 319-327 ◽  
Author(s):  
Yanzhi Pan ◽  
Chao Li ◽  
Yugao Ma ◽  
Shanfang Huang ◽  
Dong Wang

2012 ◽  
Vol 1380 ◽  
Author(s):  
Estrella Martínez-Ramos ◽  
Roberto Pérez-Garibay ◽  
Jorge Rubio-Rojas

ABSTRACTAn identification of the characteristics of microbbubles dispersion is presented in this paper, when frother addition (MIBC) is modified in a biphasic system (air-water). Sauter diameter (d32), gas flow rate (Jg), superficial area flow density of the microbubbles (Sb) and air holdup (εg) are the measured variables in this research work. The studied frother additions were 0, 10 and 20 ppm. Similar to conventional bubble sizes, it was observed also, that air holdup increases with the air flow rate. The linear relationship between εg and Sb permits to conclude that superficial area flow density, a variable difficult to measure directly, may be estimated if air gas holdup is known. Furthermore, the experimental results showed that frother addition (MIBC) reduced the Sauter diameter, increasing all other variables.


Sign in / Sign up

Export Citation Format

Share Document