Research of Wind Power into the Grid Based on Large-Capacity Parallel Converter Modules

2011 ◽  
Vol 383-390 ◽  
pp. 5899-5906
Author(s):  
Fei Ye ◽  
Zhong Dong Yin ◽  
Chen Xin Dai

The converters connected to the power grid, including rectifier and inverter. The rectifier uses DC voltage outer loop control method and the input current inner loop control method, three-phase inverter output current uses SPWM modulation. With the capacity of the system increasing, the capacity of a single converter can no longer meet the requirements, for improving the system's power grid, reliability and efficiency, converters can be paralleled. Parallel operation generates loop current; one of the effective methods of suppressing the loop current is to connect limiting inductance in the inverter AC side. Through simulation, gets the suitable inductance value, and researches the dead zone time affecting on the loop current. When the dead zone times of two modules are not equal, the loop current increases.

Sensors ◽  
2017 ◽  
Vol 17 (9) ◽  
pp. 2147 ◽  
Author(s):  
Dunzhu Xia ◽  
Limei Cheng ◽  
Yanhong Yao

Author(s):  
Amin Alizadeh Asl ◽  
Ramin Alizadeh Asl

<span>A hybrid DC/DC/AC converter connected to the grid without a three-phase transformer is controlled. The decentralized control method is applied to the hybrid DC-DC converter such that the maximum power of PV flows to the grid side. This controller must charge and discharge the battery at the proper time. It must also regulate DC-link voltage. An additional advantage of the proposed control is that the three-phase inverter does not need a separate controller such as PWM and SPWM. A simple technique is used for creating the desired phase shift in the three-phase inverter, which makes the active and reactive power of the inverter controllable. A new configuration is also proposed to transmit and manage the generation power of PV. In this<br />scheme, the battery and fuel cell are employed as an auxiliary source to manage the generation power of PV. Finally, a real-time simulation is performed to verify the effectiveness of the proposed controller and system by considering the real characteristics of PV and FC.</span>


Energies ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 4093 ◽  
Author(s):  
Mora ◽  
Núñez ◽  
Visairo ◽  
Segundo ◽  
Camargo

This paper deals with a battery energy storage system (BESS) in only one of its multiple operating modes, that is when the BESS is charging the battery bank and with the focus on the control scheme design for the BESS input stage, which is a three-phase LCL-filter PWM rectifier. The rectifier's main requirements comprise output voltage regulation, power factor control, and low input current harmonic distortion, even in the presence of input voltage variations. Typically, these objectives are modeled by using a dq model with its corresponding two-loop controller architecture, including an outer voltage loop and a current internal loop. This paper outlines an alternative approach to tackle the problem by using not only an input–output map linearization controller, with the aim of a single-loop current control, but also by avoiding the dq modeling. In this case, the voltage is indirectly controlled by computing the current references based on the converter power balance. The mathematical model of the three-phase LCL-filter PWM rectifier is defined based on the delta connection of the filter, which accomplishes the requirements of a 100 kW BESS module. Extensive simulation results are included to confirm the performance of the proposed closed-loop control in practical applications.


2012 ◽  
Vol 516-517 ◽  
pp. 1722-1727 ◽  
Author(s):  
Wei Jun Yun ◽  
Gang Yao ◽  
Li Dan Zhou ◽  
Chen Chen ◽  
Jun Min Pan

Nowadays Static Synchronous Compensator (STATCOM) has gradually become one of the representative techniques in the field of dynamic reactive power compensation in the power distribution system. This paper analyzed the topology and the voltage imbalance problem of the up and down capacitors on DC side of the three-phase four-wire STATCOM. In allusion to the imbalance problem of neutral point, a novel control strategy based on the control of zero-sequence current was proposed. By the triple close-loop control strategy, the STATCOM can achieve great control accuracy and dynamic performance. Simulation result proves that the proposed control method is effective.


2013 ◽  
Vol 694-697 ◽  
pp. 1435-1438
Author(s):  
Shi Su ◽  
Wen Bin Zhang

This paper presents simulation of a three-phase single-level inverter. The inverter is designed to be fed into the power grid. State-space model and sinusoidal PWM technique are described in this paper. The simulation is based on Multisim and LabVIEW co-simulation. This method of SPWM simulation has some software and harmonic which must be taken into account while using it in the real power grid. Efforts are underway to improve the three-phase single-level inverter.


2021 ◽  
Vol 2137 (1) ◽  
pp. 012011
Author(s):  
Mingliang Hu ◽  
Wei Han ◽  
Wei Gao ◽  
Yang Liu

Abstract With the development of multi-/all-electric technology, more and more aircraft platforms use electrically driven servo valves as the driving source to realize real-time adjustments of flow, pressure and temperature in the area network. The new generation of aircraft applies a stepper motor to drive the servo valve as the drive source, and utilizes the holding torque and open-loop control characteristics of the stepper motor when the stepper motor could not meet aircraft’s requirements of the reliability of the servo valve, the controllability of the opening and closing angle, and the environmental resistance. This paper develops a set of stepper motor drive servo valve control system. The system is mainly composed of flight tube bus, electromechanical management computer, remote actuation unit, remote interface unit and motor-driven servo valve. The stepper motor driver is integrated in the remote execution unit and is used to control the two-phase hybrid stepper motor to drive the servo valve. The topology of a three-phase inverter bridge drive is used to achieve the two-phase double four-shot drive, which saves about 25% power drive hardware. By controlling the two-phases motor, the direction and amplitude of the current one can realize micro-step control. The test and simulation result show that the system has higher control accuracy and better acceleration. The deceleration characteristics in two-phase full step and micro step working modes can expand the application of electric servo valve and improve aircraft performance.


Sign in / Sign up

Export Citation Format

Share Document