Functional Testing of Direct Metal Laser Sintered (DMLS) Components for Automotive Application

2011 ◽  
Vol 383-390 ◽  
pp. 6242-6246 ◽  
Author(s):  
C.D. Naiju ◽  
M. Adithan ◽  
Pezhinkattil Radhakrishnan ◽  
Y. Upendra Sravan

This work presents the results of a study to determine the wear behavior of components manufactured by direct metal laser sintering (DMLS). Wear is an important issue in using layer manufactured parts for functional application. Two different bushes were selected for the functional testing for wear behavior studies. Specimens (bushes) were manufactured by DMLS technology and was tested for wear behavior and compared with bushes manufactured by conventional manufacturing methods. Components were manufactured by using the process parameters like sintering speed, hatch spacing, post contouring speed, hatch type and infiltration with an optimized value. Testing was carried out for bushes, used for an automobile engine starter motor. A comparative study for the wear behavior was carried out and results are discussed.

2012 ◽  
Vol 488-489 ◽  
pp. 1414-1418 ◽  
Author(s):  
C.D. Naiju ◽  
K. Annamalai ◽  
P.K. Manoj ◽  
K.M. Ayaz

Direct metal laser sintering (DMLS) is one of the methods in layer manufacturing technologies by which metal powder can be directly used to produce both prototype and production tools. The components manufactured by DMLS should have essential hardness for its application in the industry. This study was carried out to determine the optimum process parameters influencing the hardness of the components produced by DMLS. Sintering speed, hatch spacing, post contouring, infiltration and hatch type are the process parameters taken up for study. Statistical design of experiments using Taguchi’s orthogonal array was employed for this study. The experimental data obtained were analyzed using ANOVA. From the results, it is found that one of the process parameters; scan spacing affects the hardness of the parts produced by this technology to a significant extent.


2015 ◽  
Vol 1089 ◽  
pp. 3-6
Author(s):  
Shu Ling Cui

A comparative study of dyeing properties of PPT and PET fiber is carried out. Experiments show that the K/S value, dyeing up-take, and permeability of PPT fiber are obviously higher than those of PET fiber under the same dyeing conditions. The optimized dyeing process parameters for PPT fiber are temperature 110°C, pH 7, and time 40 min.


2010 ◽  
Vol 43 ◽  
pp. 578-582 ◽  
Author(s):  
C.Y. Wang ◽  
Q. Dong ◽  
X.X. Shen

Warpage is a crucial factor to accuracy of sintering part in selective laser sintering (SLS) process. In this paper, The influence of process parameters on warpage when sintering polystyrene(PS) materials in SLS are investigated. The laser power, scanning speed, hatch spacing, layer thickness as well as temperature of powder are considered as the main process parameters. The results showed that warpage increases with the increase of hatch space. Contary to it, warpage decreases with the increase of laser power. Warpage decreases with the increase of layer thickness between 0.16~0.18mm and changes little with increase of the thickness. Warpage increases along with the increase of scanning speed but decreases when the speed is over about 2000mm/s. When the temperature changes between 82°C-86°C, warpage decreases little with the increase of temperature. But further increase of temperature leads to warpage decreasing sharply when the temperature changes between 86°C-90°C.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 450
Author(s):  
Johan Lindwall ◽  
Andreas Lundbäck ◽  
Jithin James Marattukalam ◽  
Anders Ericsson

The development of process parameters and scanning strategies for bulk metallic glass formation during additive manufacturing is time-consuming and costly. It typically involves trials with varying settings and destructive testing to evaluate the final phase structure of the experimental samples. In this study, we present an alternative method by modelling to predict the influence of the process parameters on the crystalline phase evolution during laser-based powder bed fusion (PBF-LB). The methodology is demonstrated by performing simulations, varying the following parameters: laser power, hatch spacing and hatch length. The results are compared in terms of crystalline volume fraction, crystal number density and mean crystal radius after scanning five consecutive layers. The result from the simulation shows an identical trend for the predicted crystalline phase fraction compared to the experimental estimates. It is shown that a low laser power, large hatch spacing and long hatch lengths are beneficial for glass formation during PBF-LB. The absolute values show an offset though, over-predicted by the numerical model. The method can indicate favourable parameter settings and be a complementary tool in the development of scanning strategies and processing parameters for additive manufacturing of bulk metallic glass.


Sign in / Sign up

Export Citation Format

Share Document