Analysis and Experiment of the Eddy Current Losses for Canned Motor

2011 ◽  
Vol 383-390 ◽  
pp. 7521-7525
Author(s):  
Yue Jun An ◽  
Guo Ming Liu ◽  
Hong Liang Wen ◽  
Wen Qiang Zhao ◽  
Li Ping Xue ◽  
...  

Induced eddy currents in can cause loss when the canned motor runs, the loss make the motor`s temperature rise, directly affect the canned motor pump and the entire transmission system security. Empirical formula estimates eddy current losses which has a big error, it is difficult to meet the engineering requirements. For the canned motor with Hastelloy-C alloy or Sus316L cans, analyzed electromagnetic field and calculated can loss using a finite element method of Ansoft. The paper developed four prototypes, and obtained the experimental value of can loss via simple no-load experiment by the loss separation method. The results are compared with simulation value show that the accuracy of FEM is higher accurately than empirical formula; Analysis shows that dimension of a model and can material characteristic parameters such as the resistivity influence on the calculated error of FEM, the paper proposes to correct the error in the case of considering can material characteristic parameters.

2014 ◽  
Vol 63 (1) ◽  
pp. 107-114
Author(s):  
Dariusz Koteras

Abstract The results of the eddy currents losses calculations with using electrodynamics scaling were presented in this paper. Scaling rules were used for obtain the values of the eddy currents losses. For the calculations Finite Element Method was used. Numerical calculations were verified by measurements and a good agreement was obtained


Author(s):  
Karl Hollaus

Purpose The simulation of eddy currents in laminated iron cores by the finite element method (FEM) is of great interest in the design of electrical devices. Modeling each laminate by finite elements leads to extremely large nonlinear systems of equations impossible to solve with present computer resources reasonably. The purpose of this study is to show that the multiscale finite element method (MSFEM) overcomes this difficulty. Design/methodology/approach A new MSFEM approach for eddy currents of laminated nonlinear iron cores in three dimensions based on the magnetic vector potential is presented. How to construct the MSFEM approach in principal is shown. The MSFEM with the Biot–Savart field in the frequency domain, a higher-order approach, the time stepping method and with the harmonic balance method are introduced and studied. Findings Various simulations demonstrate the feasibility, efficiency and versatility of the new MSFEM. Originality/value The novel MSFEM solves true three-dimensional eddy current problems in laminated iron cores taking into account of the edge effect.


2012 ◽  
Vol 229-231 ◽  
pp. 884-887
Author(s):  
Bao Dong Bai ◽  
Ying Ying Gao ◽  
Jia Yin Wang

This paper mainly researches the eddy current losses of transformer shielding coil by adopting for analytical method. This method calculates the conductor’s boundary conditions directly by using the analytical solution of the leakage magnetic field, which is generated into the conductor eddy current equation for the analytical formula, then compared the analytical method with the finite element method to fix the analytical formula, the relevant theories are applied to analyze the results of using two different shielding to reduce the losses and find the effectively measures.


Sensors ◽  
2020 ◽  
Vol 20 (10) ◽  
pp. 2808
Author(s):  
Duo Teng ◽  
Yatian Li

An appropriate magnetic design helps ensure that the Terfenol-D (Terbium- Dysprosium-Iron alloy) rods in giant magnetostrictive transducers have the perfect magnetostriction ability. To determine the optimum Terfenol-D rod state, a segmented stack configuration comprised by the Terfenol-D rods and NdFeB (neodymium-iron-boron) permanent magnets is presented. The bias magnetic field distributions simulated through the finite element method indicate that the segmented stack configuration is one effective way to produce the desired bias magnetic field. Particularly for long stacks, establishing a majority of domain to satisfy the desired bias magnetic field range is feasible. On the other hand, the eddy current losses of Terfenol-D rods are also the crucial to their magnetostriction ability. To reduce eddy current losses, the configuration with digital slots in the Terfenol-D rods is presented. The induced eddy currents and the losses are estimated. The simulations reveal that the digital slots configuration decreases the eddy current losses by 78.5% compared to the same size Terfenol-D rod with only a hole. A Terfenol-D transducer prototype has been manufactured using a Terfenol-D rod with a mechanical prestress of about 10 MPa and a bias magnetic field of about 42 kA/m. Its maximum transmitting current response of 185.4 dB at 3.75 kHz indicates its practicability for application as an underwater projector.


Sign in / Sign up

Export Citation Format

Share Document