scholarly journals Ratcheting Strain Accumulation Due to Asymmetric Cyclic Loading of Zircaloy-2 at Room Temperature

2016 ◽  
Vol 2 ◽  
pp. 2757-2763 ◽  
Author(s):  
R.S. Rajpurohit ◽  
N.C. Santhi Srinivas ◽  
Vakil Singh
2011 ◽  
Vol 415-417 ◽  
pp. 2318-2321 ◽  
Author(s):  
Qian Hua Kan ◽  
Wen Yi Yan ◽  
Guo Zheng Kang ◽  
Su Juan Guo

The cyclic deformation including the ratcheting of TA16 titanium alloy was investigated experimentally at room temperature. Experimental results under symmetrical strain-controlled cyclic loading with various strain amplitudes show that the responded stress amplitude keeps almost unchanged with the increasing number of cycles. It is concluded that TA16 titanium alloy can be regarded as a cyclic stable material. Remarkable ratcheting was also observed under asymmetrical stress-controlled cyclic loading, i.e., ratcheting strain increases with the increasing number of cycles. The ratcheting strain strongly depends on the stress level and increases with the increase of applied mean stress, stress amplitude and stress ratio. These findings are useful to reasonably model the cyclic deformation of TA16 titanium alloy.


2020 ◽  
Vol 36 (2) ◽  
pp. 167-176 ◽  
Author(s):  
Daniele Barbera ◽  
Haofeng Chen

ABSTRACTStructural integrity plays an important role in any industrial activity, due to its capability of assessing complex systems against sudden and unpredicted failures. The work here presented investigates an unexpected new mechanism occurring in structures subjected to monotonic and cyclic loading at high temperature creep condition. An unexpected accumulation of plastic strain is observed to occur, within the high-temperature creep dwell. This phenomenon has been observed during several full inelastic finite element analyses. In order to understand which parameters make possible such behaviour, an extensive numerical study has been undertaken on two different notched bars. The notched bar has been selected due to its capability of representing a multiaxial stress state, which is a practical situation in real components. Two numerical examples consisting of an axisymmetric v-notch bar and a semi-circular notched bar are considered, in order to investigate different notches severity. Two material models have been considered for the plastic response, which is modelled by both Elastic-Perfectly Plastic and Armstrong-Frederick kinematic hardening material models. The high-temperature creep behaviour is introduced using the time hardening law. To study the problem several results are presented, as the effect of the material model on the plastic strain accumulation, the effect of the notch severity and the mesh element type and sensitivity. All the findings further confirm that the phenomenon observed is not an artefact but a real mechanism, which needs to be considered when assessing off-design condition. Moreover, it might be extremely dangerous if the cyclic loading condition occurs at such a high loading level.


2013 ◽  
Vol 690-693 ◽  
pp. 1713-1717 ◽  
Author(s):  
Hong Qiang Guo ◽  
Hua Li ◽  
Yi Chen Sun ◽  
Wei Wei Yu

In this paper, a series of bending cyclic tests under stress controlled were conducted at room temperature on Zircaloy-4 (Zr-4) to investigate its bending ratcheting behavior. The effects of mean stress and stress amplitude on the bending ratcheting behavior were experimentally studied, respectively. The experimental results show that the ratcheting strain of the material is very sensitive to mean stress and stress amplitude. It can be concluded that ratcheting strain level increases with increasing mean stress and stress amplitude.


2015 ◽  
Vol 18 (4) ◽  
pp. 162-169
Author(s):  
Thao Song Thanh Nguyen ◽  
Nhung Thi Tuyet Le

An experimental investigation into ratcheting strain and stress-strain hysteresis loop in stress-controlled cyclic tensile tests at room temperature was performed to determine the effect of loading frequency on the cyclic mechanical behavior of highdensity polyethylene (HDPE). It was found that frequencies ranging from 0.01 Hz up to 1 Hz mostly affects the accumulated strain over related time scales (i.e that of the cycle itself) and not over long time scale (i.e. during the full test). In addition, the higher the frequency is, the more closed and vertical the loops are. Furthermore, the frequency affects only on the kinetics of stabilization of ratcheting strain but not on one of hysteresis loop.


1989 ◽  
Vol 24 (2) ◽  
pp. 95-102 ◽  
Author(s):  
D J Brookfield ◽  
D N Moreton

This paper details tests undertaken to determine the 1 per cent strain accumulation boundary in stainless steel type 316 strip subjected to constant axial tension and a cyclic change of curvature. Boundaries are obtained for temperatures between 300 and 500°C. These are compared with two design rules, both of which are shown to be conservative. Additionally, the temperature at which the transition from the characteristic room temperature behaviour of continued ratchetting to the ‘shakedown’ observed at elevated temperatures is investigated. Results obtained indicate that this transition temperature is influenced by the magnitude of the applied stresses.


Materials ◽  
2018 ◽  
Vol 11 (4) ◽  
pp. 513 ◽  
Author(s):  
Zhifeng Yan ◽  
Denghui Wang ◽  
Wenxian Wang ◽  
Jun Zhou ◽  
Xiuli He ◽  
...  

2015 ◽  
Vol 240 ◽  
pp. 232-237
Author(s):  
Tadeusz Szymczak ◽  
Adam Brodecki ◽  
Andrzej Eminger ◽  
Zbigniew L. Kowalewski ◽  
Dariusz Rudnik

The paper reports experimental results from tests carried out at room temperature on servo-hydraulic system dedicated for examination of the exploitation properties of rocker arms. The ball joint of this element was modified by an application of composite coating such as the tungsten carbide (WC). To apply cyclic loading to rocker arms the griping system was designed and elaborated. Results from tests performed on the composite coated ball joints were compared with data obtained for typical elements. Variations of the following parameters versus time i.e. force, temperature and surface topography of balls were analysed with respect to exploitation properties of the modified ball joints. An increase of the wear coefficient was achieved for sliding joints of the steel ball-steel cups coated by the WC.


Sign in / Sign up

Export Citation Format

Share Document