Kinematics Simulation of Industrial Robot Based on MATLAB

2011 ◽  
Vol 415-417 ◽  
pp. 690-696
Author(s):  
Han Ming Cai ◽  
Ting Ting Xing

In this paper, we discussed the kinematics simulation of a six DOF (degree of freedom) industrial robot, modeling the robot with PRO/E. D-H coordinate transformation method is used to establish coordinates of robot kinematics mathematical model and the target matrix. The powerful symbolic computation of MATLAB functions is used to analyze the equation, and the inverse kinematics solution is obtained. The joint trajectory of the robot in the implementation of task and workspace are worked out through the forward kinematics solution.

Author(s):  
Meng XianHui ◽  
Yuan Chong

This paper introduces the related technology in the design of robot virtual prototype. Research is mainly focused on the virtual prototype of the mechanism design, kinematics simulation, control logic and main problems of prototype performance analysis, and try to use X3D technology to realize virtual prototype model of the robot. It is verifies the effectiveness of X3D technology in robot virtual prototype design. The key to realize the robot mechanism design, kinematics simulation, several aspects such as the logic control. But the design of the robot system is a comprehensive mechanical mechanisms, kinematics, dynamics, graphics, artificial intelligence, concurrent engineering, and simulation project of multiple disciplines such as advanced manufacturing technology. The design of the robot system includes dynamic analysis, static analysis, speed, trajectory control, sensor fusion, artificial intelligence analysis, and other technology. The comprehensive realization of multidisciplinary various restrictive factors is to achieve a feasible, effective and ideal robot virtual prototype model of the key problems. Further use X3D technology to add various related techniques to achieve X3D virtual prototype model, the design of robot system, the development of industrial robot has important practical significance.


2020 ◽  
pp. 027836492093194
Author(s):  
Neil T Dantam

Modern approaches for robot kinematics employ the product of exponentials formulation, represented using homogeneous transformation matrices. Quaternions over dual numbers are an established alternative representation; however, their use presents certain challenges: the dual quaternion exponential and logarithm contain a zero-angle singularity, and many common operations are less efficient using dual quaternions than with matrices. We present a new derivation of the dual quaternion exponential and logarithm that removes the singularity, we show an implicit representation of dual quaternions offers analytical and empirical efficiency advantages compared with both matrices and explicit dual quaternions, and we derive efficient dual quaternion forms of differential and inverse position kinematics. Analytically, implicit dual quaternions are more compact and require fewer arithmetic instructions for common operations, including chaining and exponentials. Empirically, we demonstrate a 30–40% speedup on forward kinematics and a 300–500% speedup on inverse position kinematics. This work relates dual quaternions with modern exponential coordinates and demonstrates that dual quaternions are a robust and efficient representation for robot kinematics.


2012 ◽  
Vol 588-589 ◽  
pp. 1636-1639
Author(s):  
Ke Tao ◽  
Shi Liang Fan

This paper studies three degrees of freedom used in multi-joint robot kinematics in the process of loading and unloading problems, through the homogeneous coordinate transformation method to describe the spatial relationship between two adjacent connecting rod, thus derived the equivalent homogeneous transformation matrix between "gripper coordinate system" and "reference frame", establishing a movement equation for the operation arm, then worked out all joints variable with the known position vector of the last connecting rod.


2010 ◽  
Vol 43 ◽  
pp. 683-686
Author(s):  
Li Da Zhu ◽  
Jia Ying Pei ◽  
Tian Biao Yu ◽  
Wan Shan Wang

In order to analyze the motion characteristics of turn-milling center, it’s prototype is modeled and spiral motion is simulated and analyzed to get curves of displacement and velocity in forward kinematics and inverse kinematics. The rationality and applicability of mechanism design is verificated to provide the basis of fast optimized design of turn-milling center. So the method can forecast and improve before physical prototype manufacturing to ensure design feasibility and save development time.


2013 ◽  
Vol 711 ◽  
pp. 422-425 ◽  
Author(s):  
Yu Hu Zuo

A NURBS surface tool trajectory planning method of engraving robot is proposed. The calculation algorithm including NURBS surface tool trajectory, cutting point and effective cutting radius of end milling cutter and inverse kinematics transform is discussed in detail using Taylor and coordinate transformation method. It is the foundation to further applied to the engraving robot tool trajectory planning or off-line programming.


2014 ◽  
Vol 610 ◽  
pp. 28-34 ◽  
Author(s):  
Xiao Lin Ma ◽  
Hui Chai ◽  
Yun Jiang Li

This paper introduces the development of hot-line live working manipulators and gives a new configuration manipulator driven by hydraulic actuator firstly. Then, its forward kinematics equations are derived with homogenous transformation method. Finally, the analytical solutions of its inverse kinematics are solved under the condition that the posture of the end-effector is known and given with z-y-z Euler angles.


2014 ◽  
Vol 709 ◽  
pp. 316-322
Author(s):  
Xu Dong ◽  
Zhong Cai Zheng ◽  
Yan Gao ◽  
Zhen Ting Jiang ◽  
Hai Yong Xiao

The Power-On-Live Manipulator with hydraulic system can complete many different repair works in the Substation. This paper focuses on the study of the kinematics of six DOF manipulator, and establishes the forward kinematics equation based on the analysis of the whole power-on-live manipulator. The methods of analytical and geometric are used to complete the power-on-live manipulator’s inverse kinematics calculations, and then the effectiveness of the power-on-live manipulator’s forward and inverse kinematics are verified by the numerical simulation software and the dynamic simulation software.


2012 ◽  
Vol 251 ◽  
pp. 191-195
Author(s):  
Xiao Xi Chen ◽  
Ping He ◽  
Liu Han

In this paper, the context of relative kinematic modeling, and the analysis of symmetric dual four-bar mechanism industrial robot are introduced. For such mechanism, its designation of the representative algorithm, and its simplification, simulation, verification and alternately analysis in Forward Kinematics Problems (FKP) and Inverse Kinematics Problem (IKP) were studied. Via such method, it’s possible to efficiently analyze and solve the both of FKP and IKP of symmetric dual planar four-bar mechanism. Thus this method can be applied for the design, simulation and verification for the robot with similar structure.


Author(s):  
Meng XianHui ◽  
Yuan Chong

This paper mainly studies the goal when using standard X3D robot virtual prototype technology research, design, and kinematics simulation of the body. In the study, the virtual prototype model should be able to satisfy the basic research and design of industrial robot kinematics. Validation X3D technology in the design of virtual prototype of robots can have good effective action. The design of industrial robot virtualization is positive. This work includes X3D technology based on the model, the robot kinematics mathematic model of virtual prototype, and the use of this robot kinematics model using the model analysis of the performance parameters of the robot virtual prototype. This paper solves X3D using the virtual prototype technology robot run to learn some key problems of the simulation of the virtual prototype of robot X3D expression methods (robot virtual body expression, organization, the assembly, and the constraint X3D research). Based on the virtual prototype, X3D is inverse kinematics calculation model.


2014 ◽  
Vol 668-669 ◽  
pp. 361-365
Author(s):  
Yan Li ◽  
You Li Chen

The paper mainly analyzed the robot kinematics of the line heating plate. In order to realize the moving of complex trajectory for the robot, a forward kinematics modeling and the simulation of inverse kinematics are carried out. Firstly, with the D-H modeling method, the line heating plate robot forward kinematics equations and the spatial geometric model of the manipulator are set up, then multi-input multi-output systems based on support vector machines algorithm is used to establish the inverse kinematics model for the robot . At last, the simulations of tracing complex trajectory with the inverse kinematics model are carried out, and the results show that the model derived by SVM can trace the trajectory very well.


Sign in / Sign up

Export Citation Format

Share Document