Research on Mechanism of Two Phase Flow Lifting Pressure Equipment and Output Regulation

2012 ◽  
Vol 430-432 ◽  
pp. 1619-1623 ◽  
Author(s):  
Gang Li ◽  
Yun Hong Huang ◽  
Zhi Lin Lv ◽  
Hui Lan Huang

Taking into account the process and mechanism of lifting pressure were complex due to the condensation and shock wave, a one-dimensional theory model based on direct contact condensation is presented to analyze the lifting pressure character of steam-water two phase flow injector, and some key issues, such as inter-phase mass transfer computed by the average condensation heat transfer coefficient and phase volume fraction determined by steam plume, are discussed in detail. The regulations of discharge mass flow and output temperature are decoupling control according to the theory model, and the inlet water mass flow is to determine the output temperature, the variable throat section of steam nozzle is to determine the discharge mass flow.

Author(s):  
David Heinze ◽  
Thomas Schulenberg ◽  
Lars Behnke

A simulation model for the direct contact condensation of steam in subcooled water is presented that allows determination of major parameters of the process, such as the jet penetration length. Entrainment of water by the steam jet is modeled based on the Kelvin–Helmholtz and Rayleigh–Taylor instability theories. Primary atomization due to acceleration of interfacial waves and secondary atomization due to aerodynamic forces account for the initial size of entrained droplets. The resulting steam-water two-phase flow is simulated based on a one-dimensional two-fluid model. An interfacial area transport equation is used to track changes of the interfacial area density due to droplet entrainment and steam condensation. Interfacial heat and mass transfer rates during condensation are calculated using the two-resistance model. The resulting two-phase flow equations constitute a system of ordinary differential equations, which is solved by means of the explicit Runge–Kutta–Fehlberg algorithm. The simulation results are in good qualitative agreement with published experimental data over a wide range of pool temperatures and mass flow rates.


Author(s):  
Nan Liang ◽  
Changqing Tian ◽  
Shuangquan Shao

As one kind of fluid machinery related to the two-phase flow, the refrigeration system encounters more problems of instability. It is essential to ensure the stability of the refrigeration systems for the operation and efficiency. This paper presents the experimental investigation on the static and dynamic instability in an evaporator of refrigeration system. The static instability experiments showed that the oscillatory period and swing of the mixture-vapor transition point by observation with a camera through the transparent quartz glass tube at the outlet of the evaporator. The pressure drop versus mass flow rate curves of refrigerant two phase flow in the evaporator were obtained with a negative slope region in addition to two positive slope regions, thus making the flow rate a multi-valued function of the pressure drop. For dynamic instabilities in the evaporation process, three types of oscillations (density wave type, pressure drop type and thermal type) were observed at different mass flow rates and heat fluxes, which can be represented in the pressure drop versus mass flow rate curves. For the dynamic instabilities, density wave oscillations happen when the heat flux is high with the constant mass flow rate. Thermal oscillations happen when the heat flux is correspondingly low with constant mass flow rate. Though the refrigeration system do not have special tank, the accumulator and receiver provide enough compressible volume to induce the pressure drop oscillations. The representation and characteristic of each oscillation type were also analyzed in the paper.


Author(s):  
Marco Pellegrini ◽  
Giulia Agostinelli ◽  
Hidetoshi Okada ◽  
Masanori Naitoh

Steam condensation is characterized by a relatively large interfacial region between gas and liquid which, in computational fluid dynamic (CFD) analyses, allows the creation of a discretized domain whose average cell size is larger than the interface itself. For this reason generally one fluid model with interface tracking (e.g. volume of fluid method, VOF) is employed for its solution in CFD, since the solution of the interface requires a reasonable amount of cells, reducing the modeling efforts. However, for some particular condensation applications, requiring the computation of long transients or the steam ejected through a large number of holes, one-fluid model becomes computationally too expensive for providing engineering information, and a two-fluid model (i.e. Eulerian two-phase flow) is preferable. Eulerian two-phase flow requires the introduction of closure terms representing the interactions between the two fluids in particular, in the condensation case, drag and heat transfer. Both terms involve the description of the interaction area whose definition is different from the typical one adopted in the boiling analyses. In the present work a simple but effective formulation for the interaction area is given based on the volume fraction gradient and then applied to a validation test case of steam bubbling in various subcooling conditions. It has been shown that this method gives realistic values of bubble detachment time, bubble penetration for the cases of interest in the nuclear application and in the particular application to the Fukushima Daiichi accident.


2018 ◽  
Vol 141 (3) ◽  
Author(s):  
T. Salameh ◽  
Y. Zurigat ◽  
A. Badran ◽  
C. Ghenai ◽  
M. El Haj Assad ◽  
...  

This paper presents three-dimensional numerical simulation results of the effect of surface tension on two-phase flow over unglazed collector covered with a wire screen. The homogenous model is used to simulate the flow with and without the effect of porous material of wire screen and surface tension. The Eulerian-Eulerian multiphase flow approach was used in this study. The phases are completely stratified, the interphase is well defined (free surface flow), and interphase transfer rate is very large. The liquid–solid interface, gas–liquid interface, and the volume fraction for both phases were considered as boundaries for this model. The results show that the use of porous material of wire screen will reduce the velocity of water flow and help the water flow to distribute evenly over unglazed plate collector. The possibility of forming any hot spot region on the surface was reduced. The water velocity with the effect of surface tension was found higher than the one without this effect, due to the extra momentum source added by surface tension in longitudinal direction. The use of porous material of wires assures an evenly distribution flow velocity over the inclined plate, therefore helps a net enhancement of heat transfer mechanism for unglazed solar water collector application.


Geofluids ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Yunfeng Dai ◽  
Zhifang Zhou ◽  
Jin Lin ◽  
Jiangbo Han

To describe accurately the flow characteristic of fracture scale displacements of immiscible fluids, an incompressible two-phase (crude oil and water) flow model incorporating interfacial forces and nonzero contact angles is developed. The roughness of the two-dimensional synthetic rough-walled fractures is controlled with different fractal dimension parameters. Described by the Navier–Stokes equations, the moving interface between crude oil and water is tracked using level set method. The method accounts for differences in densities and viscosities of crude oil and water and includes the effect of interfacial force. The wettability of the rough fracture wall is taken into account by defining the contact angle and slip length. The curve of the invasion pressure-water volume fraction is generated by modeling two-phase flow during a sudden drainage. The volume fraction of water restricted in the rough-walled fracture is calculated by integrating the water volume and dividing by the total cavity volume of the fracture while the two-phase flow is quasistatic. The effect of invasion pressure of crude oil, roughness of fracture wall, and wettability of the wall on two-phase flow in rough-walled fracture is evaluated.


Sign in / Sign up

Export Citation Format

Share Document