Study on the Residual Compressive Strength of a Composite Sandwich Panel with Foam Core after Low Velocity Impact

2012 ◽  
Vol 430-432 ◽  
pp. 484-487 ◽  
Author(s):  
Zong Hong Xie ◽  
Jiang Tian ◽  
Jian Zhao ◽  
Wei Li

The residual compressive strength of a foam core sandwich panel after low-velocity impact was studied by using experimental and analytical methods. The test specimens were compressed uniaxially after they were subjected to a low-velocity-impact. From the observation in the test, one can conclude that the subsequent core crushing around the impact region is the major failure mode in the sandwich structure. A failure criterion named Damage Propagation Criterion was proposed to predict the residual compressive load bearing capability of the low-velocity impacted composite sandwich panel. The characteristic value used in this failure criterion can be calculated by an analytical model developed or by conducting the Sandwich Compression after Impact test.

2013 ◽  
Vol 710 ◽  
pp. 136-141
Author(s):  
Li Jun Wei ◽  
Fang Lue Huang ◽  
Hong Peng Li

Sandwich composite laminates structure is a classic application of composite material on actual aircraft structural. Dealing with low-velocity impact damage and residual compressive strength of sandwich composite laminates, explicit finite element method of ABAQUS/Explicit software was adopted to simulate low-velocity impact and compression process. Impact response and invalidation on compression between sandwich composite laminates with different core materials and regular composite laminates were compared. The simulation results indicated that softer core materials can absorb more impact energy, reduce the structure damage and enhance the residual compressive strength after impact.


2019 ◽  
Vol 26 (1) ◽  
pp. 517-530 ◽  
Author(s):  
Ye Wu ◽  
Yun Wan

AbstractDue to the properties of shape memory effect and super-elasticity, shape memory alloy (SMA) is added into glass fiber reinforced polymer (GFRP) face-sheets of foam core sandwich panels to improve the impact resistence performance by many researchers. This paper tries to discuss the failure mechanism of sandwich panels with GF/ epoxy face-sheets embedded with SMA wires and conventional 304 SS wire nets under low-velocity impact and compression after impact (CAI) tests. The histories of contact force, absorbed energy and deflection during the impact process are obtained by experiment. Besides, the failure modes of sandwich panels with different ply modes are compared by visual inspection and scanning electron microscopy (SEM). CAI tests are conducted with the help of digital image correlation (DIC) technology. Based on the results, the sandwich panels embedded with SMA wires can absorb more impact energy, and show relatively excellent CAI performance. This is because the SMA wires can absorb and transmit the energy to the outer region of GFRP face-sheet due to the super-elasticity-behavior. The failure process and mechanism of the CAI test is also discussed.


2000 ◽  
Author(s):  
M. Motuku ◽  
R. M. Rodgers ◽  
S. Jeelani ◽  
U. K. Vaidya

Abstract The effect of foam core density and facesheet thickness on the low velocity impact response and damage evolution in homogeneous foam core sandwich composites was studied. The failure characteristics, initiation and evolution of damage as well as the effect of impact energy were investigated. A Dynatup 8210 Impact Test Machine was utilized to conduct the low-velocity impact tests. Characterization of the impact response was performed by comparing the impact load histories, impact plots and failure characteristics. Fractography analysis was conducted through the use of scanning electron microscopy (SEM) and optical microscopy. Three types of foam cores with different densities, namely Airlite B12.5, Rohacell IG-71R63 and Airex R63.5 foam cores, were used to study the effect of core density. Considering four groups of facesheets made of different layers of cross-ply carbon prepregs performed the effect of facesheet thickness. For all the facesheet thicknesses (0.011-0.894-cm thick) and impact energy (11-40 J) range considered in this study, the maximum load (Pm), deflection-at-maximum load (δm) and time-to-maximum load (tm) exhibited strong influence or dependence on the type of foam core as opposed to the facesheet thickness. The energy-to-maximum load (Em), total energy absorbed (Et) and total energy-to-impact energy (Et/Eimp) ratio became less sensitive on the foam core density (or type) with increasing facesheet thickness. A transition point from foam core to facesheet controlled impact behavior as a function of impact energy level was observed. The impact parameters varied either linearly or parabolically with impact energy depending on the impact energy level, type of foam core and facesheet thickness. Excellent repeatability of impact data was generally obtained with increase in foam core density.


Sign in / Sign up

Export Citation Format

Share Document