Application of BP Neural Networks in Damage Prediction of Multilayer Medium Penetration and Blasting

2012 ◽  
Vol 446-449 ◽  
pp. 1417-1420
Author(s):  
Xiao Ling Liu ◽  
Ting Lei ◽  
Yong Yao

Back-propagation method (BP method) is the supervised learning algorithm that is the most widely and successfully used in feed forward network nowadays. This paper dealt with the penetration and blasting experimental data by BP Neural networks, including of the influence of the velocity and attack angles to damage of multilayer medium penetration and blasting. Through handling of the experimental data by the BP Network system, coupled effects of quantity of explosive and buried depth can be uncoupled. The curves of infundibular crater radius vs. quantity of explosive and infundibular crater depth vs. buried depth of explosive was given. Base on computing results, it is shown that the neural networks method can be used to predict the damage of multilayer medium penetration and blasting.

2011 ◽  
Vol 121-126 ◽  
pp. 4239-4243 ◽  
Author(s):  
Du Jou Huang ◽  
Yu Ju Chen ◽  
Huang Chu Huang ◽  
Yu An Lin ◽  
Rey Chue Hwang

The chromatic aberration estimations of touch panel (TP) film by using neural networks are presented in this paper. The neural networks with error back-propagation (BP) learning algorithm were used to catch the complex relationship between the chromatic aberration, i.e., L.A.B. values, and the relative parameters of TP decoration film. An artificial intelligent (AI) estimator based on neural model for the estimation of physical property of TP film is expected to be developed. From the simulation results shown, the estimations of chromatic aberration of TP film are very accurate. In other words, such an AI estimator is quite promising and potential in commercial using.


2007 ◽  
Vol 280-283 ◽  
pp. 495-498
Author(s):  
Qiang Luo ◽  
Qing Li Ren

A prediction model for purity of the artificial synthetic hydrotalcite under varied process parameters based on improved artificial back-propagation (BP) neural networks is developed. And the non-linear relationship between the hydrotalcite purity and the raw material adding amount of NaOH, MgCl2 and AlCl3 was established based on BP learning algorithm analysis and convergence improvement. The hydrotalcite purity can be predicted by means of the trained neural net. Thus, by virtue of the prediction model, the future hydrotalcite purity can be evaluated under random complicated raw material amounts. Moreover, the best processing technology is optimized using the genetic algorithm.


Author(s):  
Asma Elyounsi ◽  
Hatem Tlijani ◽  
Mohamed Salim Bouhlel

Traditional neural networks are very diverse and have been used during the last decades in the fields of data classification. These networks like MLP, back propagation neural networks (BPNN) and feed forward network have shown inability to scale with problem size and with the slow convergence rate. So in order to overcome these numbers of drawbacks, the use of higher order neural networks (HONNs) becomes the solution by adding input units along with a stronger functioning of other neural units in the network and transforms easily these input units to hidden layers. In this paper, a new metaheuristic method, Firefly (FFA), is applied to calculate the optimal weights of the Functional Link Artificial Neural Network (FLANN) by using the flashing behavior of fireflies in order to classify ISA-Radar target. The average classification result of FLANN-FFA which reached 96% shows the efficiency of the process compared to other tested methods.


Perception ◽  
1989 ◽  
Vol 18 (6) ◽  
pp. 793-803 ◽  
Author(s):  
Ian R Moorhead ◽  
Nigel D Haig ◽  
Richard A Clement

The application of theoretical neural networks to preprocessed images was investigated with the aim of developing a computational recognition system. The neural networks were trained by means of a back-propagation algorithm, to respond selectively to computer-generated bars and edges. The receptive fields of the trained networks were then mapped, in terms of both their synaptic weights and their responses to spot stimuli. There was a direct relationship between the pattern of weights on the inputs to the hidden units (the units in the intermediate layer between the input and the output units), and their receptive field as mapped by spot stimuli. This relationship was not sustained at the level of the output units in that their spot-mapped responses failed to correspond either with the weights of the connections from the hidden units to the output units, or with a qualitative analysis of the networks. Part of this discrepancy may be ascribed to the output function used in the back-propagation algorithm.


2017 ◽  
Vol 43 (4) ◽  
pp. 26-32 ◽  
Author(s):  
Sinan Mehmet Turp

AbstractThis study investigates the estimated adsorption efficiency of artificial Nickel (II) ions with perlite in an aqueous solution using artificial neural networks, based on 140 experimental data sets. Prediction using artificial neural networks is performed by enhancing the adsorption efficiency with the use of Nickel (II) ions, with the initial concentrations ranging from 0.1 mg/L to 10 mg/L, the adsorbent dosage ranging from 0.1 mg to 2 mg, and the varying time of effect ranging from 5 to 30 mins. This study presents an artificial neural network that predicts the adsorption efficiency of Nickel (II) ions with perlite. The best algorithm is determined as a quasi-Newton back-propagation algorithm. The performance of the artificial neural network is determined by coefficient determination (R2), and its architecture is 3-12-1. The prediction shows that there is an outstanding relationship between the experimental data and the predicted values.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Aminmohammad Saberian ◽  
H. Hizam ◽  
M. A. M. Radzi ◽  
M. Z. A. Ab Kadir ◽  
Maryam Mirzaei

This paper presents a solar power modelling method using artificial neural networks (ANNs). Two neural network structures, namely, general regression neural network (GRNN) feedforward back propagation (FFBP), have been used to model a photovoltaic panel output power and approximate the generated power. Both neural networks have four inputs and one output. The inputs are maximum temperature, minimum temperature, mean temperature, and irradiance; the output is the power. The data used in this paper started from January 1, 2006, until December 31, 2010. The five years of data were split into two parts: 2006–2008 and 2009-2010; the first part was used for training and the second part was used for testing the neural networks. A mathematical equation is used to estimate the generated power. At the end, both of these networks have shown good modelling performance; however, FFBP has shown a better performance comparing with GRNN.


2009 ◽  
Vol 19 (04) ◽  
pp. 285-294 ◽  
Author(s):  
ADNAN KHASHMAN

Credit scoring is one of the key analytical techniques in credit risk evaluation which has been an active research area in financial risk management. This paper presents a credit risk evaluation system that uses a neural network model based on the back propagation learning algorithm. We train and implement the neural network to decide whether to approve or reject a credit application, using seven learning schemes and real world credit applications from the Australian credit approval datasets. A comparison of the system performance under the different learning schemes is provided, furthermore, we compare the performance of two neural networks; with one and two hidden layers following the ideal learning scheme. Experimental results suggest that neural networks can be effectively used in automatic processing of credit applications.


Sign in / Sign up

Export Citation Format

Share Document