Experimental Study on Dynamic Elastic Modulus and Critical Dynamic Stress of Cinder-Improved Soil Subgrade

Author(s):  
Xiang-dong Zhang ◽  
Kun Ren
2012 ◽  
Vol 446-449 ◽  
pp. 1709-1712 ◽  
Author(s):  
Yong Zhang ◽  
Li Wan ◽  
Xiong Wei Li

Through the undrained dynamic triaxial experiment, the deformation characteristics of saturated soft clay under cyclic loading are investigated. The cyclic loading was simplified as sine wave. It is found that under different dynamic stress, the deformation patterns of specimen in this experiment can be divided into three kinds, such as dense compressed, tensile break-up and shear failure type. In the process of vibration, the deformation forms of samples can also be divided into three types by dynamic stress amplitude, such as stable, destructive and critical type. The dynamic stress amplitude corresponding to the critical type is called critical dynamic stress. With the dynamic elastic strain increasing gradually, the dynamic elastic modulus decreases and rigidity softening occurs. Furthermore, dynamic elastic modulus and dynamic elastic strain curve decrease while the cyclic number is increasing. Finally, to establish the equation of the relationship between dynamic elastic modulus and dynamic elastic strain, the factor of cycle number should be considered.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Jingjing Zhou ◽  
Fasuo Zhao ◽  
Yanbo Zhu ◽  
Wenqi Dong ◽  
Ziguang He

Sliding zone dynamics in the Qinling-Daba mountain area under different dynamic parameters have not been studied extensively. In this study, we investigated the dynamic behavior of the sliding zones of a high-steep rock landslide in the Qinling-Daba mountain area under the influence of dynamic stress amplitude and frequency and proposed an empirical model of the dynamic constitutive relationship. The dynamic behavior was studied based on a cyclic triaxial test system. The results indicated that an increase in the dynamic stress amplitude decreased the dynamic elastic modulus linearly, increased the damping ratio, and increased the axial strain exponentially. Among these properties, the elastic strain was found to be more sensitive to the increase in the dynamic stress amplitude than the plastic strain. As the loading frequency increased, the dynamic elastic modulus increased, whereas the damping ratio decreased. Furthermore, the proposed empirical model of the dynamic constitutive relationship between the vibration number and loading frequency based on the dynamic elastic modulus could satisfactorily describe the dynamic stress-strain relationships of the samples from test stability and failure zones. These findings are expected to make a significant contribution toward further revealing the sliding mechanism of such landslides.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Min Geng ◽  
Debin Wang ◽  
Peiyong Li

To study the dynamic behavior of reinforced subgrade, a series of undrained cyclic triaxial tests of reinforced soil (the specimen a height of 50 cm and a diameter of 20 cm) were performed in this paper. The specimens were tested by varying confining pressure, vibration frequency, dynamic stress amplitudes, and reinforced layers. Orthogonal experiment is a better way to optimize the process of experiment. Impact on dynamic behavior of the reinforced soil specimens is discussed through orthogonal design of experiments in four factors and three levels. This study has demonstrated that the order of dynamic elastic modulus of reinforced soil is influenced by dynamic stress amplitude, frequency, reinforced layer, and confining pressure within changing in factor level. The dynamic stress amplitude has great influence on the dynamic elastic modulus of reinforced soil. The bearing capacity and dynamic elastic modulus of reinforced subgrade decrease slightly with the increase of dynamic strain. Frequency has an influence on the dynamic elastic modulus. It is shown that the cumulative strain of reinforced soil is related to the vibration frequency. The test results also exemplify the reinforced subgrade restrict lateral displacement of subgrade and reduce settlement of subgrade under long-term cyclic loading.


2011 ◽  
Vol 368-373 ◽  
pp. 2346-2350
Author(s):  
Yi Duo Zhang ◽  
Rong Gui Liu ◽  
Yu Chen ◽  
Kai Fu

Based on fatigue tests of pre-stressed concrete (PC) and ordinary concrete beams for 15 specimens after different times of freezing-thawing circle, the degradation process for the tested beams of the relative dynamic elastic modulus is conducted. The experimental study shows that the pre-stressing level and times of freezing-thawing circles are main influence factors to durability of test beams. The results of this study are useful for the exploration of the mechanism of the PC structure’s damage and the improvement of design theory concerning the durability of the PC structures.


2011 ◽  
Vol 71-78 ◽  
pp. 4361-4364 ◽  
Author(s):  
Xiao Yan Zhang ◽  
Xin Xin Ding ◽  
Shun Bo Zhao ◽  
Zhan Fang Ge

Experiments were conducted to study the effects of source rock state and stone powder on freeze-thaw resistance of concrete with proto-machine-made sand, the strength grade of concrete was C50, the source rock states were gravel and crushed stone, the contents of stone powder in sand were 5%, 9% and 13% respectively. The values of relative dynamic elastic modulus and mass of concrete at different freeze-thaw cycle times were measured, the reduction of relative dynamic elastic modulus and mass loss were calculated to evaluate the freeze-thaw resistance of concrete. The results show that freeze-thaw resistances are controlled by the reduction of relative dynamic elastic modulus of concrete, which are good of concrete with proto-machine-made sand of gravel and crushed stone, and increases with the increasing content of stone powder in sand made of gravel. The reasons leading to difference of freeze-thaw resistance of concrete with sand made of gravel and crushed stone are discussed.


2012 ◽  
Vol 455-456 ◽  
pp. 781-785
Author(s):  
Ping Lu ◽  
Xin Mao Li ◽  
Xue Qiang Ma ◽  
Wei Bo Huang

. This paper mainly studied the properties of PAE polyurea coated concrete under coactions of salt fog and freeze-thaw. After exposed salt fog conditions for 200d, T3, B2, F2 and TM four coated concrete relative dynamic elastic modulus have small changes, but different coated concrete variation amplitude is different. T3 coated concrete after 100 times of freeze-thaw cycle the relative dynamic elastic modulus began to drop, 200 times freeze-thaw cycle ends, relative dynamic elastic modulus variation is the largest, decrease rate is 95%, TM concrete during 200 times freeze-thaw cycle, relative dynamic elastic modulus almost no change, B2 concrete and F2 concrete the extent of change between coating T3 and TM. After 300 times the freeze-thaw cycle coated concrete didn't appear freeze-thaw damage phenomenon. Four kinds of coating concrete relative dynamic elastic modulus variation by large to small order: T3 coated concrete > B2 coated concrete >F2 coated concrete > TM coated concrete, concrete with the same 200d rule. Frost resistance order, by contrast, TM coated concrete > B2 coated concrete > F2 coated concrete > T3 coated concrete.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Yushi Liu ◽  
Xiaoming Zhou ◽  
Chengbo Lv ◽  
Yingzi Yang ◽  
Tianan Liu

Fly ash (FA) has been an important ingredient for engineered cementitious composite (ECC) with excellent tensile strain capacity and multiple cracking. Unfortunately, the frost resistance of ECC with high-volume FA has always been a problem. This paper discusses the influence of silica fume (SF) and ground-granulated blast-furnace slag (GGBS) on the frost resistance of ECC with high volume of FA. Four ECC mixtures, ECC (50% FA), ECC (70% FA), ECC (30% FA + 40% SL), and ECC (65% FA + 5% SF), are evaluated by freezing-thawing cycles up to 200 cycles in tap water and sodium chloride solution. The result shows the relative dynamic elastic modulus and mass loss of ECC in sodium chloride solution by freeze-thaw cycles are larger than those in tap water by freeze-thaw cycles. Moreover, the relative dynamic elastic modulus and mass loss of ECC by freeze-thaw cycles increase with FA content increasing. However, the ECC (30% FA + 40% SL) shows a lower relative dynamic elastic modulus and mass loss, but its deflection upon four-point bending test is relatively smaller before and after freeze-thaw cycles. By contrast, the ECC (65% FA + 5% SF) exhibits a significant deflection increase with higher first cracking load, and the toughness increases sharply after freeze-thaw cycles, meaning ECC has good toughness property.


Sign in / Sign up

Export Citation Format

Share Document