Model Test Study on the Effect of Vertical Lode on Horizontal Bearing Capacity of Disk Pile

2012 ◽  
Vol 446-449 ◽  
pp. 1804-1807
Author(s):  
Fan Li Meng ◽  
Guang Yu Sun ◽  
Cheng Yuan Lu

In order to study how it influence the horizontal bearing capacity of the disk pile when there exists a vertical load, a group of model tests has been designed. Three double-disk piles were used in the test, and the distance of the two disks is 5 times as the disk diameter. First drew a vertical load V=200N/300N/400N on the top of pile1/2/3 respectively, then put on the horizontal load stage by stage. And by the test, we can study the differences of the pile bearing properties such as changes in the pile bending moment, the horizontal and vertical deformation on the top. Experiment showed that when the vertical load is quite small(V=200N、300N), the existence of vertical load has little to do with horizontal bearing capacity. When a vertical load increases to a certain value(V=400N), The maximum bending moment and horizontal displacement of the pile under the same horizontal load reduce, which indicates that the disks of the pile play a significant role in bearing combined loading.

2011 ◽  
Vol 368-373 ◽  
pp. 2571-2574
Author(s):  
Cheng Yuan Lu ◽  
Jin Jin Li ◽  
Fan Li Meng

A group of model tests were designed to study the effect of horizontal load on the vertical bearing capacity of disk pile. Three double-disk piles were used in the test, and the distance of the two disks is 5 times as the disk diameter. Drew a horizontal load H=100N/200N/300N on the top of pile1/2/3 respectively, and put on the vertical load stage by stage, then studied the differences of three piles’ bearing properties such as changes of the pile bending moment, the horizontal and vertical deformation on the top, and soil pressure around the pile. Experiment showed that when the horizontal load is quite small, the existence of horizontal load has little to do with vertical bearing capacity. When the load reached a certain level, the p-∆ effect under the vertical load will significantly affect the vertical bearing capacity of the pile. Especially during the initial time while there is a large horizontal displacement or rotation generated by the horizontal load, the pile’s bearing capacity is controlled by the horizontal displacement.


2013 ◽  
Vol 470 ◽  
pp. 1101-1104
Author(s):  
Yue Hui Li ◽  
Xiao Juan Gao ◽  
Guo Hua Zhong

Model tests of the squeezed and branch pile with or without vertical load are carried out and the horizontal load bearing capacity are studied in this paper. Based on the model test results, the influence of vertical load to squeezed and branch pile horizontal load bearing capacity and the influence of horizontal load to squeezed and branch pile vertical bearing capacity are analyzed with FEM. The analysis results show that the vertical load may increase the lateral bearing capacity of pile, and the horizontal load may decrease the vertical settlement, but horizontal load may increase the horizontal displacement and moment of the pile body and lead to instability and cracking failure. This should be pay more attention in the practical engineering.


2021 ◽  
Vol 11 (10) ◽  
pp. 4432
Author(s):  
Jiseong Kim ◽  
Seong-Kyu Yun ◽  
Minsu Kang ◽  
Gichun Kang

The purpose of this study is to grasp the behavior characteristics of a single batter pile under vertical load by performing a model test. The changes in the resistance of the pile, the bending moment, etc. by the slope of the pile and the relative density of the ground were analyzed. According to the results of the test, when the relative density of the ground was medium and high, the bearing capacity kept increasing when the angle of the pile moved from a vertical position to 20°, and then decreased gradually after 20°. The bending moment of the pile increased as the relative density of the ground and the batter angle of the pile increased. The position of the maximum bending moment came closer to the ground surface as the batter angle of the pile further increased, and it occurred at a point of 5.2~6.7 times the diameter of the pile from the ground surface.


2020 ◽  
Vol 980 ◽  
pp. 301-310
Author(s):  
Yong Mei Qian ◽  
Ting Ting Zhou ◽  
Wei Tian ◽  
Phaaroe Pherekhong Alphonci

Concrete expansion pile represents a new type of high-efficiency and energy-saving variable-section filling pile and it is formed by special construction technology and equipment, this technology has been basically mature which has been gradually applied to engineering in recent years. It has high bearing capacity, small settlement and uniformity, good economic and social effect, strong anti-overturning ability and flexible design[1]. In this paper, with expansion disk spacing under bearing force as the main parameter variable, numerical simulation is carried out by ANSYS finite element software to analyze the variation relationship between horizontal displacement of the pile top, bending moment of the pile and soil stress around the pile of different disk spacing models under horizontal load, and determine the influence of disk spacing parameter on horizontal bearing capacity of the concrete expansion pile. Through the research of this paper, the influence of failure mode of concrete expansion pile and size of the disk spacing on the horizontal bearing capacity under the horizontal load is qualitatively determined, which provides a theoretical basis for improving design theory and practical application of concrete expansion pile.


2011 ◽  
Vol 243-249 ◽  
pp. 2171-2175
Author(s):  
Wen Bai Liu ◽  
Long Zhao ◽  
Ning Jia

By using ABAQUS software to conduct numerical simulation and model test of pile-bucket under mono-loading of up-pulling force and horizontal force, then make comparison of both results to testify the accuracy of finite calculation model. Then by numerical simulation to study bearing capacity of pile-bucket foundation under combined loading of up-pull and horizontal force. The result shows the pile-bucket foundation horizontal displacement will increase with the increase of up-pulling force at the limit horizontal load, and the horizontal displacement becomes more obvious as the up-pulling load increasing if providing greater horizontal loading force. Before the up-pulling force reaches the limit, horizontal load will not affect up-pulling displacement; after the up-pulling force reaches the limit, the horizontal load can slightly reduce the up-pulling displacement of pile top. The effect of up-pulling load increase on horizontal displacement is obvious for pile depth in soil at 0~15m, but very tiny for pile body with buried depth over 15m.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Peisen Wang ◽  
Hongyan Ding ◽  
Puyang Zhang

The differences in development and situation of karst caves lead to two kinds of karst caves, and the karst cave may be on the pile side or at the pile bottom, which has a different influence on the bearing capacity of pile foundation. The paper presents a numerical analysis of the influence of karst caves at pile side on the bearing capacity of super-long pile foundation in karst areas. According to the size of pile foundation of a real bridge project, this paper modelized karst caves and investigated the karst cave from the effect of length, height, and thickness of roof on horizontal and vertical bearing capacity of pile foundation. The main conclusions can be drawn as: when the horizontal displacement at the top of pile foundation is greater than 0.05 m, the horizontal load is correlated positively with the length of karst cave; when the vertical displacement is greater than 0.07 m, the vertical load is correlated negatively with the thickness of the roof of karst cave. However, the height of karst cave has little effect on the bearing capacity; also the existence of karst cave has little influence on the dynamic response of pile foundation. The results of this study can be important with reference to the design and construction of pile foundations in karst areas.


2011 ◽  
Vol 374-377 ◽  
pp. 1947-1952 ◽  
Author(s):  
Zhao Yun Xiao ◽  
Guo Xun Zhang ◽  
Wei Xu ◽  
Zhong Ming Xue

It is a complicated progress of interaction between pile and soil when pile is under both vertical load and horizontal load. This paper analyzes the variation of stress, strain, deformation and deflection of the pile body by finite element numerical simulation of single bored concrete pile under vertical load together with horizontal load. Based on the existing research results, conclusions could be that the vertical load can increase horizontal bearing capacity of the pile in sandy soils, but horizontal bearing capacity of the pile in clayey soils is more complicated. Hope that the simulation can provide some references for the design of pile foundation.


Symmetry ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1647
Author(s):  
Zunan Fu ◽  
Guoshuai Wang ◽  
Yanming Yu ◽  
Li Shi

The pile–bucket foundation that features a bucket slipped onto a monopile is a new type of symmetric offshore foundation supporting the wind turbine. Its load bearing and deformation resistance capacity are unclear, especially when subjected to cyclic horizontal loadings. In this paper, a model test has been designed and carried out for investigating the cyclic behavior of the pile–bucket foundation embedded in soft marine clay. Cyclic horizontal loads are applied in a displacement-controlled manner with different amplitudes and frequencies. The influences of cyclic loading parameters, including the amplitude, the frequency and the cycle number, have been studied from the perspectives of stiffness-degradation and damping effect that are evaluated from the recorded horizontal force–displacement relationships at the loading point. In addition, the influences of cyclic horizontal loading on the bending moment distribution and on the p–y curve have been presented and discussed. The results show that significant reductions in the foundation stiffness and in the soil resistance may be observed during the first few cycles when the loading displacement is relatively high.


2012 ◽  
Vol 461 ◽  
pp. 425-428 ◽  
Author(s):  
Lu Yan Shi ◽  
Zhen Bao Li ◽  
Zhi Yu Zhang

The paper researched on the strain, the deformation and the failure mode of hollow latticed steel columns through two experimental conditions. They were respectively about the vertical load and the horizontal load. The results showed that for the hollow latticed steel columns with upper columns, because of the stiffness of upper columns was obviously higher than the lower ones’, the upper columns were destroyed earliest under the vertical load. In addition, the columns had good horizontal bearing and deformation capacity, and the gravity second-order effects were not obvious for the columns.


Sign in / Sign up

Export Citation Format

Share Document