Ultimate Behavior of Single Shear Bolted Connections with Thin-Walled Aluminum Alloys(6061-T6)

2012 ◽  
Vol 446-449 ◽  
pp. 3441-3445 ◽  
Author(s):  
Tae Soo Kim ◽  
Yong Hyun Jo ◽  
Seung Hun Kim ◽  
Yong Taeg Lee

The purpose of this study is to investigate the ultimate behaviors of aluminum alloy bolted connections assembled with four bolts. Specimens for single shear bolted connections were tested and finite element analysis based on this test results was conducted. The validity of finite element(FE) analysis for predicting the structural behaviors such as ultimate strength, fracture mode and curling(out-of-plane deformation) occurrence was verified through the comparisons between test results and FE analysis results. It is known that the curling resulted in sudden strength drop. Moreover, FE models with free edge and restrained out-of-plane deformation for curled specimens are analyzed additionally, therefore, the influence of curling on the ultimate strength; strength reduction ratio is estimated.

2010 ◽  
Vol 452-453 ◽  
pp. 613-616 ◽  
Author(s):  
Yong Taeg Lee ◽  
Tae Soo Kim ◽  
Jin Seong Lim ◽  
Seung Hun Kim

The experimental research for single shear bolted connection of cold-formed stainless steel fabricated with two bolts (2×1 bolt arrangement) has been conducted by T.S. Kim etc. Plate thickness and end distance parallel to the direction of loading was considered as main variables. It is found that the curling occurred easily in bolted connections with a long end distance and thinner plate. In this paper, finite element analysis study has been performed in order to compare test results with the predicted results and to investigate in detail the ultimate strength and curling influence. Finite element analysis(FEA) procedures also were introduced. FE models of connections with restrained out of plane deformation were also simulated for comparison with the curled models. Therefore, the validation of FEA in predicting ultimate strength and curling behavior was verified and the strength reduction ratio caused by curling was estimated.


2013 ◽  
Vol 658 ◽  
pp. 350-353
Author(s):  
Tae Soo Kim ◽  
Min Seung Kim ◽  
Sung Woo Shin

Since stainless steel has significant characteristics such as its superior corrosion resistance, durability, aesthetic appeal etc., it has been utilized as structural members in buildings. Recently, ultimate behaviors and curling influence in austenitic stainless steel single shear bolted connections with thin-walled plane plates have been investigated by T.S. Kim. In this paper, finite element analysis (FEA) has been conducted based on the existing test results of angle bolted connections in fabricated with austenitic stainless steel. The validation of the numerical analysis prediction was verified through the comparison of test results for fracture mode, ultimate strength and curling occurrence. Curling (out-of- plane deformation) also observed in the connections with a long end distance. The curling caused the ultimate strength reduction and the ultimate strength reduction ratios (varied from 12% to 25%) caused by curling have been estimated quantitatively through the comparison of FEA results of FE models with free edge and restrained curling.


2011 ◽  
Vol 255-260 ◽  
pp. 79-83
Author(s):  
Tae Soo Kim ◽  
Jin Seong Lim

A variety of parametric studies utilizing the finite element analysis (FEA) have been performed by Kim et al in order to predict the mechanical behavior(ultimate strength) of single shear bolted joints in cold-formed(thin-walled) stainless steel. The precedent researches have been conducted with respect to the mechanical behaviors of single shear bolted joints fabricated with four bolts and two bolts. Subsequently, this study has been focused on the comparison of ultimate behaviors between the existing test results and FEA results. In addition, parametric study has been performed in order to investigate the influence of mesh size and washer existence on ultimate behaviors. Therefore, reasonable finite element modelling method and condition were recommended in this paper.


2010 ◽  
Vol 452-453 ◽  
pp. 617-620 ◽  
Author(s):  
Tae Soo Kim ◽  
Min Seung Kim ◽  
Sung Woo Shin

The application of stainless steel in buildings has been increased gradually with excellent life cycle cost for ensuring the sustainability in structures for the reduction of green house gas emission. Especially, the purpose of this paper is to investigate the structural behaviors such as ultimate strength, fracture mode and out of plane deformation, i.e., curling of single shear bolted connection of cold-formed austenitic stainless steel with two bolts (2×1 bolt arrangement). Plate thickness and end distance parallel to the direction of applied force are considered as main variables. The curling was also observed in the bolted connections with a long end distance and edge distance as the previous researches. Curling occurrence resulted in the change of fracture modes in connections with same bolt arrangement and end distance and ultimate strength reduction.


2013 ◽  
Vol 680 ◽  
pp. 252-256 ◽  
Author(s):  
Tae Soo Kim ◽  
Geun Beom Chae

Experimental studies for single shear bolted connection of cold-formed ferritic stainless steel fastened with two bolts (2×1 bolt array) and 3.0 mm thick plate has been performed by T.S. Kim etc. End distances parallel to the direction of applied force were considered as the main variables of specimens. Curling (out of plane deformation) was observed in bolted connection with 60mm end distance and it caused abrupt strength reduction. The purpose of this paper is to compare the analysis results with test results and investigate the curling influence on ultimate strength through numerical modelling. FE models with restrained curling were also simulated for strength comparison with the curled specimen. Therefore, the validation of finite element(FE) analysis in predicting ultimate strength and curling behaviour was verified and the strength reduction ratio by the curling was estimated.


2012 ◽  
Vol 19 (01) ◽  
pp. 1250001 ◽  
Author(s):  
JU-NAN KUO

In this study, the length and width effects of metal films on the stress-induced bending of a surface micromachined cantilever curved grating are systematically investigated. A characterization of cantilever curved gratings with various lengths and widths was conducted to observe out-of-plane deformation. A finite element model was established to analyze the deformation. Finite element analysis and experimental results indicate that the commonly used beam theory formula for predicting the deformation of surface micromachined cantilever curved gratings is not valid for these devices. Experiments show that the shape of a cantilever curved grating and residual stress have a close relationship. As the length increases, the residual stress of the metal increases, resulting in a larger out-of-plane deformation of the cantilever curved grating. The tip deflection gradually decreases as the length-to-width ratio of the cantilever curved grating increases. A more reliable shape design of metal films on the stress-induced bending of surface micromachined cantilever curved gratings can thus be achieved.


2012 ◽  
Vol 166-169 ◽  
pp. 1157-1163
Author(s):  
Wael Elleithy ◽  
Choon Kiat Lim

In this paper, the ultimate behaviour of bolted connections and the effect of various configurations of bolted connections on the ultimate strength are thoroughly investigated. Through finite element modelling, the stress distributions, bolt load distributions, and the effect of bolt sizes and bolt arrangements are studied in detail. The finite element analysis results show that the square shape arrangement of a bolted connection has a higher ultimate strength than that of the diamond shape arrangement. The ultimate strength of bolted connection increases as the bolts size increase until a limitation of improvement in strength is reached.


2013 ◽  
Vol 680 ◽  
pp. 247-251 ◽  
Author(s):  
Tae Soo Kim ◽  
Min Seong Kim ◽  
Seung Hun Kim ◽  
Yong Taeg Lee

Stainless steel has been utilized on structural members of building due to significant characteristics in its superior corrosion resistance, durability, aesthetic appeal etc. Recently, structural behaviors and curling effect in single shear bolted connection fabricated with thin-walled plane plates have been studied by T.S. Kim. In this paper, finite element analysis (FEA) has been conducted based on the existing test result of channel bolted connections in austenitic stainless steel. The validation of numerical approach was verified to predict the structural behaviors such as fracture mode, ultimate strength and curling occurrence of bolted connections. Curling (out-of- plane deformation) also occurred in the connections with a long end distance like bolted connections assembled with plane plates. The curling caused the ultimate strength reduction and ultimate strength reduction caused by curling has been estimated quantitatively through the comparison of FEA results of FE models with free edge and restrained curling. Additional parametric analysis for FE models with extended variables has been performed. Therefore, the ultimate strengths were compared with current design strengths and reasonable strength formulae for connections with no curling effect were proposed.


2006 ◽  
Vol 15 (1) ◽  
pp. 096369350601500
Author(s):  
Dionisios T. G. Katerelos

Among the principal damage modes in composite laminates, is delamination. Design details, such as free, straight or curved, edges, induce large local out-of-plane loads, generating interlaminar stresses. In the present work, the effect of ply thickness and the angle between two adjacent layers on the interlaminar stresses developed at the vicinity of straight and curved free edges in composite laminates under thermomechanical loading is examined. The results are obtained by the application of a 3-dimensional Finite Element Analysis.


Sign in / Sign up

Export Citation Format

Share Document