Application and Experimental Study on Seismic Behavior of Composite Core Walls with STRC Columns

2012 ◽  
Vol 446-449 ◽  
pp. 395-399
Author(s):  
Hong Ying Dong ◽  
Wan Lin Cao ◽  
Jian Wei Zhang

According to the structural design in a project in Dalian, experimental study on seismic behavior of composite core walls with steel tube-reinforced concrete (STRC) columns were carried out. Five 1/6 scale composite core wall specimens with different steel reinforced details in the walls and different openings on the walls were designed and tested under cyclic loading. Based on the experiment, hysteretic property, load-carrying capacity, ductility, energy dissipation capacity and damage characteristics of the five specimens were compared and analyzed. The results show that the core walls with STRC columns have good seismic behavior. And the seismic behavior can be greatly improved by setting concealed steel trusses in the walls.

2013 ◽  
Vol 438-439 ◽  
pp. 1529-1532
Author(s):  
Ya Bin Yang ◽  
Wan Lin Cao

Concrete filled steel tube (CFST) got a good application in actual project. In order to further the seismic performance of the CFST, experiment was carried on two 1/5 scale models, which included one CFST frame, one CFST truss. Based on the experimental study, load-carrying capacity, stiffness, ductility, hysteretic property, energy dissipation and failure phenomena of each model were analyzed. The study shows that the seismic performance of CFST truss has high bearing capacity, stiffness, energy dissipation capacity and good ductility.


2013 ◽  
Vol 438-439 ◽  
pp. 706-710
Author(s):  
Ya Bin Yang ◽  
Wan Lin Cao

Shear wall with concrete filled steel tube columns and concealed trusses is a new kind of shear wall. In order to further the seismic performance of the new shear wall, experiment was carried on three 1/5 scale models, which included one traditional RC shear wall, one shear wall with concrete filled steel tube columns, one shear wall with concrete filled steel tube columns and concealed trusses. Based on the experimental study, load-carrying capacity and hysteretic property of each model were analyzed. The study show that the seismic performance of shear wall with concrete filled round steel tube columns and concealed steel trusses has high bearing capacity and good hysteretic property. Load carrying capacity calculation of shear wall with concrete filled steel tube columns and concealed steel trusses were carried out, the calculate results were in good agreement with the measured results.


2020 ◽  
Vol 14 (54) ◽  
pp. 104-115
Author(s):  
Osman Shallan ◽  
Hassan Maaly ◽  
Mohammed Elgiar ◽  
Alaaeldin Elsisi

The steel plate shear walls (SPSW) are currently being considered as a lateral load resisting system. A numerical method was proposed to have a comprehensive comparison of seismic behaviors of the plane wall (PW) and stiffened plane wall (SPW) with different stiffener characteristics, having the same weight, by using finite element modeling (FEM). The model was validated by using previously published experimental works. The material and geometric nonlinearity were taken into consideration. In this paper, the effect of using stiffeners with different cross-section shapes and directions will be studied, and key issues, such as load-carrying capacity, stiffness, and energy dissipation capacity, were discussed in depth. It was found that the proposed SPW with horizontal L, T, and U stiffeners could effectively improve load-carrying capacity by about 4, 20, and 23%, respectively. Diagonally and horizontally, SPWs with U stiffeners have higher energy-dissipation capacity than PW by about 57, 50%, respectively. This method provides a combination of high-performance stiffeners form and material for improving the seismic behavior of SPW.


2021 ◽  
Author(s):  
Osman Shallan ◽  
Hassan M. Maaly ◽  
Mohammed M. Elgiar ◽  
Alaa El-Din Elsisi

Abstract Currently, the steel plate shear wall (SPSW) is commonly used in high-rise steel buildings as a lateral load resisting system. The SPSW consists of the boundary frame and infill plate. The objectives of this work are to study the effect of same weight different infill plate types, the effect of boundary frame characteristics, and the effect of infill plate weld separation on the seismic behavior of the SPSWs. A numerical method was proposed to have a comprehensive comparison of seismic behaviors of different types of SPSWs, having the same weight. The model was validated by using previously published numerical and experimental works. The study covers unstiffened (USPSW), stiffened (SSPSW), and corrugated steel plate shear wall (CSPSW). Similarly, the effect of boundary frame stiffness and welding separation characteristics between the plate and boundary frame will be studied, and key issues, such as load-carrying capacity, stiffness, and energy-dissipation capacity were discussed deeply. It was found that the SSPSW has better seismic behavior than USPSW and CSPSW. SSPSW has a higher load-carrying capacity than USPSW, and CSPSW by about 14, 24%, respectively. USPSW is more sensitive to the stiffness of the boundary frame than CSPSW. The plate welding separation has a greater impact on the initial stiffness than load-carrying capacity. When plate-column welding separation occurs, the initial stiffness, and the energy dissipation capacity reduces by about 21%, and 14%. Whereas, when the plate-beam separation occurs, the initial stiffness and energy dissipation capacity reduce by about 36%, and 20.5%.


2017 ◽  
Vol 8 (1) ◽  
pp. 63-78 ◽  
Author(s):  
Rhys Jones ◽  
Neil Matthews ◽  
Daren Peng ◽  
Nicholas Orchowski

Purpose The purpose of this paper is to describe the results of a combined numerical and experimental study into the ability of supersonic particle deposition (SPD) to restore the load carrying capacity of rib stiffened wing planks with simulated stress corrosion cracking (SCC). Design/methodology/approach In this context the experimental results reveal that SCC can result in a dramatic reduction in the load carrying capacity of the structure and catastrophic failure via cracking that tears the length of the structure through buckling. A combined numerical and experimental study then reveals how this reduction, in the load carrying capacity can be overcome by using SPD. Findings This paper is the first to show that SPD can be used to restore the load carrying capacity of rib stiffened structures with SCC. It also shows that SPD repairs can be designed to have only a minimal effect on the local stiffness and hence on the load path. However, care should be taken to ensure that the design is such that premature failure of the SPD does not occur. Originality/value This is the first paper to show that a thin layer of SPD deposited 7,075 aluminium alloy powder on either side of the SCC-simulated stiffener has the potential to restore the load carrying capability of a rib stiffened structure. As such it represents an important first step into establishing the potential for SPD to restore the buckling strength of rib stiffened wing panels containing SCC.


2017 ◽  
Vol 21 (3) ◽  
pp. 865-894 ◽  
Author(s):  
AR Nazari ◽  
H Hosseini-Toudeshky ◽  
MZ Kabir

In this paper, the load-carrying capacity and failure mechanisms of sandwich beams and panels with elastomeric foam core and composite laminate face sheets are investigated. For this purpose, the flexural behavior of laminated composite beams and panels (applied as face sheets) is firstly investigated under three-point bending and central concentrated loads, respectively. Then, the same examination is conducted for the sandwich beams and panels, in which the proposed elastomeric foam is utilized as the core material. It is shown that the failure mechanisms which are associated to the core in the sandwich structures with crushable foams are not considered in the examined sandwich structures. The collapse of the sandwich specimens, examined here, is observed due to the failure of the skins in some steps. By multi-step collapse of these specimens via separately failure of the top and bottom skins, a considerable amount of energy is absorbed between these steps. Due to non-brittle behavior of the core material under loading, a large compression resistance is observed after failure of the top skin which led to the recovery of the load-carrying capacity in the sandwich beams. A similar behavior for the sandwich panels led to the increase of the ultimate strength after appearance of the failure lines on the top skin. The general outcomes of this investigation promise a good influence for the application of elastomeric foam as core material for sandwich structures.


2017 ◽  
Vol 26 (6) ◽  
pp. 096369351702600
Author(s):  
Min Hou ◽  
Jiangfeng Dong ◽  
Lang Li ◽  
Shucheng Yuan ◽  
Qingyuan Wang

In order to make an effective use of the recycled aggregate concrete (RAC), a total of six steel tube RAC columns and six basalt fiber (BF) reinforced RAC columns, including six columns that were externally strengthened with aramid fiber reinforced polymer (AFRP) sheets, were fabricated and tested. This were to provide a strengthening solution to upgrade the load carrying capacity, ductility and rigidity of the RAC filled steel tube columns. Besides, the recycled coarse aggregate (RCA) replacement ratios for production of RAC was analyzed. The results show that the load carrying capacity and ultimate displacements of the RAC filled ST columns could be improved greatly by adding of basalt fiber, especially for the specimens with 50% and 100% RCA replacement ratio. The similar result was also found for the specimens strengthened with AFRP reinforcement, along with the stiffness of the columns were enhanced obviously. Moreover, the highest improving on the load carrying capacity, stiffness and ultimate displacement was found in the specimens both reinforced by adding of BF and strengthening of AFRP. However, the failure modes of the specimens with BF reinforced RAC gave a higher deformability than the one with AFRP strengthening arrangement.


2010 ◽  
Vol 163-167 ◽  
pp. 433-438
Author(s):  
Xian Lei Cao ◽  
Ji Ping Hao ◽  
Chun Lei Fan

To obtain a better understanding of the behavior and load-carrying capacity of Q460 high-strength single-angle compression members bolted by one leg, using static loading way to 48 angles carried out experimental study. The experiments show test specimens produce biaxial bending, most small slenderness ratio members are controlled by local buckling, and slender specimens are controlled by overall buckling. In addition to these factors in model experiment, influences of residual stresses on ultimate load-carrying capacity were analyzed by finite element numerical simulation analysis, the results show the residual stresses affect the ultimate load-carrying capacity of angles by about 5% or less. Comparison of the load-carrying capacity of experimental and theoretical results indicate the difference of experimental and finite element values ranges from -9.99% to +9.76%, American Design of Latticed Steel Transmission Structure (ASCE10-1997) and Chinese Code for Design of Steel Structures (GB50017-2003) underestimate separately the experimental load-carrying capacity by about 2.34%~33.93% and 1.18%~63.3%, and the agreement is somewhat good between experimental program and the finite element analysis. Based on model experiment and simulated experiment, the formula of stability coefficient of single-angle compression members was established. It provides basic data for spreading Q460 high-strength single-angles members attached by one leg.


Sign in / Sign up

Export Citation Format

Share Document