scholarly journals Effect of Different Infill Types and Welding Separation on the Cyclic Behavior of Steel Shear Walls

Author(s):  
Osman Shallan ◽  
Hassan M. Maaly ◽  
Mohammed M. Elgiar ◽  
Alaa El-Din Elsisi

Abstract Currently, the steel plate shear wall (SPSW) is commonly used in high-rise steel buildings as a lateral load resisting system. The SPSW consists of the boundary frame and infill plate. The objectives of this work are to study the effect of same weight different infill plate types, the effect of boundary frame characteristics, and the effect of infill plate weld separation on the seismic behavior of the SPSWs. A numerical method was proposed to have a comprehensive comparison of seismic behaviors of different types of SPSWs, having the same weight. The model was validated by using previously published numerical and experimental works. The study covers unstiffened (USPSW), stiffened (SSPSW), and corrugated steel plate shear wall (CSPSW). Similarly, the effect of boundary frame stiffness and welding separation characteristics between the plate and boundary frame will be studied, and key issues, such as load-carrying capacity, stiffness, and energy-dissipation capacity were discussed deeply. It was found that the SSPSW has better seismic behavior than USPSW and CSPSW. SSPSW has a higher load-carrying capacity than USPSW, and CSPSW by about 14, 24%, respectively. USPSW is more sensitive to the stiffness of the boundary frame than CSPSW. The plate welding separation has a greater impact on the initial stiffness than load-carrying capacity. When plate-column welding separation occurs, the initial stiffness, and the energy dissipation capacity reduces by about 21%, and 14%. Whereas, when the plate-beam separation occurs, the initial stiffness and energy dissipation capacity reduce by about 36%, and 20.5%.

2010 ◽  
Vol 163-167 ◽  
pp. 205-210
Author(s):  
Hong Chao Guo ◽  
Ji Ping Hao ◽  
Feng Li

Based on the experiment of a one-third scale, single-span, two-storey semi-rigid composite steel frame model with cross-stiffened steel plate shear wall under lateral cyclic loadings, the interactive effect between the joint stiffness and the cross-stiffened steel plate shear wall, the failure mode and energy dissipation mechanism of the structure system were analyzed, some important parameters were obtained in regard to load-carrying capacity, ductility, stiffness and energy dissipation capacity. The results showed that the specimen exhibited excellent ductility, energy dissipation capacity and great safety margin; the stiffness degradation of the joints was not serious, the requirement of ductility was lowered by setting up infill panels, the cooperative work between the frame and the steel plate shear wall was well; stiffeners improved the force condition of steel panels, increased the stiffness and load-carrying capacity of panels, lightened the pinch of hysteretic loops and reduced the noise and tremor of panels. The failure mode of the structure induced by buckling of stiffeners, local buckling and interactive buckling of infill panels,plastic hinges were formed at the bottom of column and semi-rigid connection, the in-plane deformation of specimen was bending failure. The research provides a basis for engineering application and theoretical analysis of the structural system.


2020 ◽  
Vol 14 (54) ◽  
pp. 104-115
Author(s):  
Osman Shallan ◽  
Hassan Maaly ◽  
Mohammed Elgiar ◽  
Alaaeldin Elsisi

The steel plate shear walls (SPSW) are currently being considered as a lateral load resisting system. A numerical method was proposed to have a comprehensive comparison of seismic behaviors of the plane wall (PW) and stiffened plane wall (SPW) with different stiffener characteristics, having the same weight, by using finite element modeling (FEM). The model was validated by using previously published experimental works. The material and geometric nonlinearity were taken into consideration. In this paper, the effect of using stiffeners with different cross-section shapes and directions will be studied, and key issues, such as load-carrying capacity, stiffness, and energy dissipation capacity, were discussed in depth. It was found that the proposed SPW with horizontal L, T, and U stiffeners could effectively improve load-carrying capacity by about 4, 20, and 23%, respectively. Diagonally and horizontally, SPWs with U stiffeners have higher energy-dissipation capacity than PW by about 57, 50%, respectively. This method provides a combination of high-performance stiffeners form and material for improving the seismic behavior of SPW.


2019 ◽  
Vol 803 ◽  
pp. 314-321 ◽  
Author(s):  
Maryam Bypour ◽  
Benyamin Kioumarsi ◽  
Mahdi Kioumarsi

In this paper, the behavior of steel plate shear wall (SPSW) in the reinforced concrete frame (RCF) has been studied numerically. Three different connections have been proposed to connect SPSW to RCF. In the first connection, fish plates, while in the second one, combination of fish plates and studs transfer forces between SPSW and RCF. In the third connection, there is no direct connection between the infill plate and RCF, and additional steel frame has been used for connecting of the infill plate. The results demonstrate that, load carrying capacity increases in all the specimens comparing the reference RCF. Investigating the formation sequence of plastic hinges in different specimens demonstrates that there is different sequence in the specimens with different connections.


2013 ◽  
Vol 671-674 ◽  
pp. 1408-1413
Author(s):  
Ning Zhou ◽  
Feng Xiong ◽  
Qun Yi Huang ◽  
Qi Ge ◽  
Jiang Chen

Composite steel plate shear wall (CSPSW), as a new lateral force resisting structure composed of steel plate and concrete slab, is introduced. CSPSWs can fully display the superiority of the steel plate and concrete. Ductility and energy dissipation capacity of the walls are increased and seismic behavior is improved. Recent seismic research around the word of two kinds of CSPSWs, namely, CSPSW with signal steel plate and CSPSW with double steel plates, is presented and discussed comprehensively. Some existing problems in current research of the walls are also reviewed in this paper.


2014 ◽  
Vol 919-921 ◽  
pp. 1812-1816 ◽  
Author(s):  
Quan Dong Xiao ◽  
Zheng Xing Guo

To study the seismic behavior of Double-Wall Precast Concrete (DWPC) shear wall, three full scale specimens are tested and compared under low-cyclic reversed loading, including two DWPC shear walls and one normal Cast-In-Situ (CIS) shear wall. By observing their experimental phenomena and failure modes, contrasting their displacement ductility coefficients, hysteretic curves, skeleton curves and energy dissipation capacity, the seismic behavior were synthetically evaluated on aspects of strength, stiffness, ductility and energy dissipation. Compared with CIS specimen, DWPC specimens have higher initial stiffness, increased cracking loads by 43% to 47%, and the ultimate loads increased by 22% to 23%. The displacement ductility ratios also meet the ductility requirements with value of 5. The hysteretic curves of three specimens are plump, and the trend of skeleton curves is basically the same. The DWPC specimens demonstrated a good energy dissipation capacity. All the specimens had shown favorable seismic performance.


2012 ◽  
Vol 446-449 ◽  
pp. 395-399
Author(s):  
Hong Ying Dong ◽  
Wan Lin Cao ◽  
Jian Wei Zhang

According to the structural design in a project in Dalian, experimental study on seismic behavior of composite core walls with steel tube-reinforced concrete (STRC) columns were carried out. Five 1/6 scale composite core wall specimens with different steel reinforced details in the walls and different openings on the walls were designed and tested under cyclic loading. Based on the experiment, hysteretic property, load-carrying capacity, ductility, energy dissipation capacity and damage characteristics of the five specimens were compared and analyzed. The results show that the core walls with STRC columns have good seismic behavior. And the seismic behavior can be greatly improved by setting concealed steel trusses in the walls.


2012 ◽  
Vol 446-449 ◽  
pp. 1006-1013 ◽  
Author(s):  
Wan Lin Cao ◽  
Hong Ying Dong ◽  
Jian Wei Zhang

RC shear wall with STRC (steel tube-reinforced concrete) columns and embedded steel plate has been proposed and used in the project of an International Conference Center. In order to ascertain the seismic performance of this kind of composite shear walls with different openings in the practical engineering, four 1/7 scale specimens with shear span ration 2.0 were tested under low-frequency cyclic loading. The load-carrying capacity, ductility, stiffness and its attenuation, hysteretic property, energy dissipation capacity and failure mode of the specimens were analyzed. The effect of the embedded steel plate and the concealed steel trusses on the seismic performance of the walls was studied. The results show that the ductility and load-carrying capacity of RC shear wall are improved greatly by setting the embedded steel plate or concealed steel trusses in the wall; The embedded steel plate and the concrete work very well through the stud connectors welded on the steel plate and the tie bars inserted in the walls; The STRC columns have the advantage of higher load-carrying capacity, not easy to crack and better ductility; The new composite shear wall has good seismic performance and important practical value. It is suitable for large and complex application of high-rise buildings in the seismic regions.


2013 ◽  
Vol 438-439 ◽  
pp. 1529-1532
Author(s):  
Ya Bin Yang ◽  
Wan Lin Cao

Concrete filled steel tube (CFST) got a good application in actual project. In order to further the seismic performance of the CFST, experiment was carried on two 1/5 scale models, which included one CFST frame, one CFST truss. Based on the experimental study, load-carrying capacity, stiffness, ductility, hysteretic property, energy dissipation and failure phenomena of each model were analyzed. The study shows that the seismic performance of CFST truss has high bearing capacity, stiffness, energy dissipation capacity and good ductility.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Zhaoyan Cui ◽  
Liuhui Tu ◽  
Ming Xu ◽  
Zhongfan Chen ◽  
Qingfeng Xu

The dowel-type connection is widely applied in timber and bamboo structures. It is ambiguous regarding the calculation method of engineered bamboo connections completely referred to the timber design codes. The steel-to-laminated bamboo dowel connections with slotted-in steel plate tests were conducted to investigate the mechanical performance under tension based on the ASTM-D5652-15. The effects of the thickness, dowel diameter, and end distance on the yield load, ultimate load, initial stiffness, and ductility of the connections were studied. The difference in the yield load for different end distance is negligible. With the same thickness of the connections, the lower the thickness to dowel diameter, the larger the load-carrying capacity. The three typical yield modes and corresponding load-displacement curves of the connections are observed. By considering the rigid-plastic model, the theoretical equation for the connections is proposed and proven to fit well with the experimental results. It presents a better prediction for the load-carrying capacity of steel-to-laminated bamboo dowel connections with slotted-in steel plate.


2012 ◽  
Vol 256-259 ◽  
pp. 942-948
Author(s):  
Wan Lin Cao ◽  
Hong Ying Dong ◽  
Jian Wei Zhang

A comparative study is conducted on the seismic behaviors of five 1/2 scale recycled concrete short columns with 1.75 shear span ratios. The stirrup ratio in the specimens was changed from 0.4%, 0.9%, to 1.29% while the ratio of their longitudinal reinforcement was the same. Crossed reinforcing bars were set in two of the specimens. Cyclic loading test was carried out for the specimens under axial compression ratio 0.4. The stiffness and its degradation, load-carrying capacity, ductility, hysteretic behavior, energy dissipation and failure phenomena of each short column were analyzed. Results show that, with the increase of the stirrup ratio in the specimens, the shear failure of the specimens is getting lighter and lighter. And the load-carrying capacity, ductility, energy dissipation capacity are improved greatly, but the rate of the increase is tending to slow. Moreover, crossed reinforcing bars in the short columns are able to improve the seismic behavior. Recycled concrete can be used for structural columns with low axial compression ratio in earthquake area.


Sign in / Sign up

Export Citation Format

Share Document