Axisymmetric Punching Capacity Analysis for Concrete Slabs

2012 ◽  
Vol 446-449 ◽  
pp. 463-470
Author(s):  
Xiao Rong Hu ◽  
Xiao Mei Fan

The axisymmetric punching analysis for concrete slabs is researched with the triple-shear unified failure criterion, which can explain the failure properties rationally for concrete under the three dimensional stress states, especially the failure properties of the intermediate principal stress effects. Moreover, a new intermediate principal stress parameter is proposed to interpret the different stress states in failure zones for different concrete. It is shown that the coefficients of b and m, which interprets the effects and the magnitudes of the intermediate principal stress have significant impacts on the axisymmetric punching capacity of concrete slabs. For a given thickness of the concrete slabs, the bearing capacity increases with the b and reaches its maximum value approximately when m=1. Using the Mohr-Coulomb failure criterion to analyze the problem of axisymmetric punching of concrete slabs often underestimate the actual ultimate punching capacity significantly.

2015 ◽  
Vol 2015 ◽  
pp. 1-8
Author(s):  
Wenge Qiu ◽  
Chao Kong ◽  
Kai Liu

The aim of this study is to have a comprehensive understanding of the mechanical behavior of rock masses around excavation under different value of intermediate principal stress. Numerical simulation was performed to investigate the influence of intermediate principal stress using a new polyaxial strength criterion which takes polyaxial state of stress into account. In order to equivalently substitute polyaxial failure criterion with Mohr-Coulomb failure criterion, a mathematical relationship was established between these two failure criteria. The influence of intermediate principal stress had been analyzed when Mohr-Coulomb strength criterion and polyaxial strength criterion were applied in the numerical simulation, respectively. Results indicate that intermediate principal stress has great influence on the mechanical behavior of rock masses; rock strength enhanced by intermediate principal stress is significant based on polyaxial strength criterion; the results of numerical simulation under Mohr-Coulomb failure criterion show that it does not exert a significant influence on rock strength. Results also indicate that when intermediate principal stress is relatively small, polyaxial strength criterion is not applicable.


2015 ◽  
Vol 15 (10) ◽  
pp. 2401-2412 ◽  
Author(s):  
J. P. Wang ◽  
Y. Xu

Abstract. From theory to experience, earthquake probability associated with an active fault should be gradually increasing with time since the last event. In this paper, a new non-stationary earthquake assessment motivated/derived from the Mohr–Coulomb failure criterion is introduced. Different from other non-stationary earthquake analyses, the new model can more clearly define and calculate the stress states between two characteristic earthquakes. In addition to the model development and the algorithms, this paper also presents an example calculation to help explain and validate the new model. On the condition of best-estimate model parameters, the example calculation shows a 7.6 % probability for the Meishan fault in central Taiwan to induce a major earthquake in years 2015–2025, and if the earthquake does not occur by 2025, the earthquake probability will increase to 8 % in 2025–2035, which validates the new model that can calculate non-stationary earthquake probability as it should vary with time.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Yu Zhang ◽  
Jin Liu ◽  
Te-Jia Fan ◽  
Chen-Yang Xu ◽  
Tian-Yi Meng ◽  
...  

To solve the Earth pressure problems in practical engineering, such as retaining walls and foundation pits, we derive active and passive Earth pressure formulas in accordance with the relationship between intermediate principal stress and excavation under three-dimensional stress states. The formulas are derived on the basis of the Mohr–Coulomb, spatially mobilized plane (SMP), σ 3 SMP, Lade–Duncan, axisymmetric compression- (AC-) SMP strength, and generalized Mises (Gen-Mises) criteria and then extended to clay. We also compare the calculated Earth pressure with the measured data. Results indicate that the Earth pressure considering medium principal stress contribution under a three-dimensional stress state is consistent with the actual engineering. The calculated active Earth pressure in the Mohr–Coulomb strength criterion is larger, and the passive Earth pressure is smaller than the practical one because the intermediate principal stress effect is not considered. The calculated results of the SMP, σ 3 SMP, Lade–Duncan, AC-SMP strength, and Gen-Mises criteria are close to the measured data, among which the result of the Gen-Mises criterion is closer. The Earth pressure calculated using the Lade–Duncan criterion is no longer appropriate to describe the Earth pressure under medium principal stress condition in this study. The results of this study have theoretical significance for retaining structure design under a three-dimensional stress state.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Jin-feng Zou ◽  
Jia-min Du

This paper focuses on a novel approach for the quasi-plane strain-softening problem of the cylindrical cavity expansion based on generalized Hoek-Brown failure criterion. Because the intermediate principal stress is deformation-dependent, the quasi-plane strain problem is defined to implement the numerical solution of the intermediate principal stress. This approach assumes that the initial total strain in axial direction is a nonzero constant (ε0) and the plastic strain in axial direction is not zero. Based on 3D failure criterion, the numerical solution of plastic strain is given. Solution of the intermediate principal stress can be derived by Hooke’s law. The radial and circumferential stress and strain considering the intermediate principal stress are obtained by the proposed approach of the intermediate principal stress, stress equilibrium equation, and generalized H-B failure criterion. The numerical results can be used for the solution of strain-softening surrounding rock. In additional, the validity and accuracy of the proposed approach are verified with the published results. At last, parametric studies are carried out using MATLAB programming to highlight the influences of the out-of-plane stress on the stress and displacement of surrounding rock.


2010 ◽  
Vol 160-162 ◽  
pp. 1425-1431
Author(s):  
Kun Yong Zhang ◽  
Yan Gang Zhang ◽  
Chi Wang

Most soil constitutive models were developed based on the traditional triaxial tests with isotropic assumption, in which the load is applied as the major principal stress direction and the other two principal stresses are symmetric. When such isotropic models are applied to practical analysis, stress induced anisotropy under complex stress state and the middle principal stress effects are often neglected, thus there are many disagreements between the calculated results and the infield testing data. To simulate the practical loading process, true triaxial tests were carried out on geomaterial under three-dimensional stress state. It was found that the stress induced anisotropy effects are remarkable and the middle principal stress effects are obvious because of the initial three-dimensional stress state. Such kind of stress-induced anisotropy could have important impact on the numerical analysis results and should be taken into consideration when developing the constitutive model.


Sign in / Sign up

Export Citation Format

Share Document