Comprehensive Analysis for Air Supply Fan Faults Based on HVAC Mathematical Model

2012 ◽  
Vol 452-453 ◽  
pp. 460-468
Author(s):  
Davood Dehestani ◽  
Jafar Madadnia ◽  
Homa Koosha ◽  
Fahimeh Eftekhari

Due to the growing demand on high efficient heat ventilation and air conditioning (HVAC) systems, how to improve the efficiency of HVAC system regarding reduces energy consumption of system has become one of the critical issues. Reports indicate that efficiency and availability are heavily dependent upon high reliability and maintainability. Recently, the concept of e-maintenance has been introduced to reduce the cost of maintenance. In e-maintenance systems, the fault detection and isolation (FDI) system plays a crucial role for identifying failures. Finding healthy HVAC source as the reference for health monitoring is the main aim in this area. To dispel this concern a comprehensive transient model of heat ventilation and air conditioning (HVAC) systems is developed in this study. The transient model equations can be solved efficiently using MATLAB coding and simulation technique. Our proposed model is validated against real HVAC system regarding different parts of HVAC. The developed model in this study can be used for a pre tuning of control system and put to good use for fault detection and isolation in order to accomplish high-quality health monitoring and result in energy saving. Fan supply consider as faulty device of HVAC system with six fault type. A sensitivity analysis based on evaluated model shows us three features are sensitive to all faults type and three auxiliary features are sensitive to some faults. The magnitude and trait of features are a good potential for automatic fault tolerant system based on machine learning systems

Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 400 ◽  
Author(s):  
Zelin Nie ◽  
Feng Gao ◽  
Chao-Bo Yan

Reducing the energy consumption of the heating, ventilation, and air conditioning (HVAC) systems while ensuring users’ comfort is of both academic and practical significance. However, the-state-of-the-art of the optimization model of the HVAC system is that either the thermal dynamic model is simplified as a linear model, or the optimization model of the HVAC system is single-timescale, which leads to heavy computation burden. To balance the practicality and the overhead of computation, in this paper, a multi-timescale bilinear model of HVAC systems is proposed. To guarantee the consistency of models in different timescales, the fast timescale model is built first with a bilinear form, and then the slow timescale model is induced from the fast one, specifically, with a bilinear-like form. After a simplified replacement made for the bilinear-like part, this problem can be solved by a convexification method. Extensive numerical experiments have been conducted to validate the effectiveness of this model.


2010 ◽  
Vol 20-23 ◽  
pp. 688-693
Author(s):  
Jiang Liu ◽  
Bai Gen Cai ◽  
Tao Tang ◽  
Jian Wang

Fault tolerance is crucial to the operating safety and performance of train locating system. Based on the requirements of reliability and safety for train locating, the fault characteristics of location measuring sensors are analyzed. Based on the structure of the train locating system, the fault-tolerant design of the system is given with the location filtering module for case, in which six fault detectors are employed to determine the configuration of the module. Then a PCA based fault detection and isolation method is proposed with Hawkins T2 statistics and the corresponding control limit. By dynamically adjusting the efficiency factors, fault could be detected and isolated as prior defined isolating strategies, and then the fault tolerant performance will be guaranteed. Simulation results demonstrate the high fault tolerant ability of the proposed approach and certain practical application value.


2019 ◽  
Vol 124 (1273) ◽  
pp. 385-408
Author(s):  
M. Saied ◽  
B. Lussier ◽  
I. Fantoni ◽  
H. Shraim ◽  
C. Francis

ABSTRACTThis paper considers actuator redundancy management for a redundant multirotor Unmanned Aerial Vehicle (UAV) under actuators failures. Different approaches are proposed: using robust control (passive fault tolerance), and reconfigurable control (active fault tolerance). The robust controller is designed using high-order super-twisting sliding mode techniques, and handles the failures without requiring information from a Fault Detection scheme. The Active Fault-Tolerant Control (AFTC) is achieved through redistributing the control signals among the healthy actuators using reconfigurable multiplexing and pseudo-inverse control allocation. The Fault Detection and Isolation problem is also considered by proposing model-based and model-free modules. The proposed techniques are all implemented on a coaxial octorotor UAV. Different experiments with different scenarios were conducted for the validation of the proposed strategies. Finally, advantages, disadvantages, application considerations and limitations of each method are examined through quantitative and qualitative studies.


2019 ◽  
Vol 111 ◽  
pp. 05010
Author(s):  
Shohei Miyata ◽  
Yasunori Akashi ◽  
Jongyeon Lim ◽  
Yasuhiro Kuwahara

Detecting and diagnosing faults that degrade the performance of heating, ventilation, and air conditioning (HVAC) systems is very important for maintaining high energy efficiency. The performance of HVAC systems can be evaluated by analyzing monitored data. However, data from a HVAC system generally includes uncertainties, which renders monitored data less reliable. Then, we focused on uncertainties and a calculated performance distribution. The uncertainties from sensors, actuators, and communications were modelled stochastically and were incorporated into a detailed simulation. The system coefficient of performance (SCOP) was used as a performance indicator, which is defined as the ratio of suppled heat to total power consumption. The SCOP distributions over the course of representative weeks in 2007 and 2015 were calculated by repeating the simulation 2,000 times with different uncertainties. Regarding the results for 2015, the 90% confidence interval of the distribution was -4.9% to 5.8% from the SCOP value without uncertainties. The SCOP value determined from the monitored data in 2015 was outside of the low end of the distribution though that in 2007 was inside of the interval. Through an analysis of the monitored data, it was found that fault detection is possible by comparing the monitored data with the distribution.


Author(s):  
Hao Yang ◽  
Bin Jiang ◽  
Vincent Cocquempot ◽  
Lingli Lu

Supervisory fault tolerant control with integrated fault detection and isolation: A switched system approachThis paper focuses on supervisory fault tolerant control design for a class of systems with faults ranging over a finite cover. The proposed framework is based on a switched system approach, and relies on a supervisory switching within a family of pre-computed candidate controllers without individual fault detection and isolation schemes. Each fault set can be accommodated either by one candidate controller or by a set of controllers under an appropriate switching law. Two aircraft examples are included to illustrate the efficiency of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document