Synthesis, Characterization of Electrospun Mesoporous ZnO/SnO2 Composites Nanofibers and their Photocatalytic Property

2012 ◽  
Vol 463-464 ◽  
pp. 548-554
Author(s):  
Rui Lai Liu ◽  
Pei Zheng Chen ◽  
Jun Shao Liu ◽  
Hui Hua Jiang ◽  
Liang Bi Chen

Mesoporous ZnO/SnO2 (Zn : Sn = 2 : 1) composite nanofibers with diameter of 49±6 nm and pore size of 6.7 nm were fabricated via the electrospinning technique. Their structure and morphology were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), UV–vis diffuse reflectance spectra (DRS) and nitrogen absorption-desorption isotherm analysis. The photocatalytic degradation rate of RhB dye by the mesoporous ZnO/SnO2 composite nanofibers was 0.051 min-1, which was more than two times and seven times of that by the pure ZnO (0.024 min-1) and pure SnO2 (0.007 min-1) nanofibers, respectively. The charge separation of electrons and holes was promoted and the recombination of the hole-electron pairs was reduced because of the coupling effect of ZnO and SnO2 in the grain-like composite nanoparticles, thus the quantum efficiency was increased. A schematic diagram of photocatalytic mechanism of mesoporous ZnO/SnO2 composite nanofibers was presented.

2020 ◽  
Vol 9 (4) ◽  
pp. 117-122
Author(s):  
Vuong Nguyen Minh ◽  
Dung Dinh Tien ◽  
Hieu Hoang Nhat ◽  
Nghia Nguyen Van ◽  
Truong Nguyen Ngoc Khoa ◽  
...  

The volatile organic compounds (VOCs) sensing layers were studied using ZnO nanomaterials with different morphologies including hierarchical nanostructure (ZnO-H), nanorods (ZnO-NRs), commercial nanoparticles (ZnO-CNPs) and wet chemical synthesized nanoparticles (ZnO-HNPs). ZnO hierarchical structure was fabricated by an electrospinning technique followed by hydrothermal process. ZnO vertical nanorods structure was fabricated by hydrothermal method, while ZnO nanoparticles based sensors were prepared from commercial powder and wet chemical method. The morphology and properties of the fabricated samples were examined by scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM). VOCs sensing responses toward acetone, ethanol and methanol with respect to altered ZnO nanostructureswas systematically compared at different working temperatures. The enhanced response at low working temperatures induced by theopen space hierarchical structure was observed. The VOCs sensing mechanisms of the ZnO nanostructures based sensing layer were also explained and discussed in detail. 


2006 ◽  
Vol 45 ◽  
pp. 735-740 ◽  
Author(s):  
W. Nuansing ◽  
S. Maensiri

This paper reports on the fabrication of nanofibres of ceramic compounds using electrospinning technique. In a typical process, ceramic nanofibres are fabricated by electrospinning a precursor mixture of appropriated metal sources, polymer and solvent, followed by calcination treatment of the electrospun composite nanofibres. In this work, the electrospinning set up as well as experimental procedure are described in detail. The fabrication of thermoelectric oxide NaCo2O4, ferroelectric Ba1-xSrxTiO3 and semiconductor TiO2 nanofibres with diameter of ~20-200 nm are demonstrated. The characterization of the fabricated nanofibres using TG-DTA, X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectroscopy, scanning electron microscopy, and transmission electron microscopy is also investigated.


2011 ◽  
Vol 110-116 ◽  
pp. 547-552 ◽  
Author(s):  
Yu Xin Wang ◽  
Jing Xu ◽  
Xing Guo Cheng ◽  
Hong Fang Xu ◽  
Li Jun Liu

ZnO nanostructures with different morphology have been successfully fabricated by a simple relative low temperature approach at 90 °C for 5 h without surfactant assistance. These structures can be easily tailed using varied concentrations of sodium hydroxide (NaOH) and different amounts of the hydrazine hydrate (N2H4·H2O). X-ray diffraction (XRD) result proves the formation of ZnO with wurtzite structure. Microstructure as revealed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) indicates that the rod-like and chrysanthemum-like ZnO nanostructures contain many radial nanorods, which grow along the [0001] direction. Furthermore, the as-prepared ZnO nanomaterials exhibit high activity on the photo-catalytic degradation of typical persistent organic pollutants (POPs), indicating that they are promising as semiconductor photo-catalysts.


2011 ◽  
Vol 356-360 ◽  
pp. 524-528 ◽  
Author(s):  
Chun Ling Yu ◽  
Rui Xue Wu ◽  
Ying Huan Fu ◽  
Xiao Li Dong ◽  
Hong Chao Ma

A polyaniline supported titanium dioxide photocatalyst was prepared by an impregnation-hydrothermal process and characterized by powder X-ray diffraction, transmission electron microscopy and UV-visible spectroscopy. It was found that the TiO2 nanoparticles were well dispersed on the surface of the polyaniline and the photocatalyst has a stronger absorption compared with that of pure TiO2 over the whole of the visible spectrum. The photocatalyst exhibited higher photocatalytic activity than pure TiO2 for the photodegradation of solutions of the anthraquinone dye, reactive brilliant blue KN-R, under visible light irradiation.


2014 ◽  
Vol 898 ◽  
pp. 23-26
Author(s):  
Jing Li ◽  
Wei Sun ◽  
Wei Min Dai ◽  
Yong Cai Zhang

TiO2/SnS2 nanocomposite was synthesized via hydrothermal treatment of tin (IV) chloride pentahydrate, thioacetamide and TiO2 nanotubes in deionized water at 150 °C for 3 h. The structure, composition and optical property of the as-synthesized nanocomposite were characterized by X-ray diffraction, energy dispersive X-ray spectroscopy, transmission electron microscopy and UV-vis diffuse reflectance spectra, and its photocatalytic property was tested in the reduction of aqueous Cr6+ under visible-light (λ > 420 nm) irradiation. It was observed that TiO2 nanotubes exhibited no photocatalytic activity, whereas TiO2/SnS2 nanocomposite exhibited photocatalytic activity in the reduction of aqueous Cr6+ under visible-light (λ > 420 nm) irradiation.


2012 ◽  
Vol 465 ◽  
pp. 44-50 ◽  
Author(s):  
Su Jun Yuan ◽  
Yao Gang Li ◽  
Qing Hong Zhang ◽  
Hong Zhi Wang

The highly dispersed TiO2 sols composed of anatase crystallites (ca.5 nm) were prepared by peptization of amorphous precipitates with trifluoroactic acid (TFA) during the synthesis. The size and crystallinity of the particles were tuned by the subsequent hydrothermal treatment. The prepared TiO2 nanocrystals were characterized by X-ray diffraction and transmission electron microscopy (TEM). The TEM results indicated that the growth of the crystallites could be inhibited by the increasing addition of TFA and the average sizes of TiO2 nanocrystals were all ultrafine. The degradation of phenol over the nanocrystals after calcination at 500 °C was investigated. The photocatalytic results showed that the sample with a high addition of TFA obtained a better photocatalytic property than that of the commercial TiO2


Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2303 ◽  
Author(s):  
Yinxia Chen ◽  
Xianbing Ji ◽  
Vadivel Sethumathavan ◽  
Bappi Paul

In this present work, we synthesized a yolk-shell shaped CuCo2S4 by a simple anion exchange method. The morphological and structural properties of the as-synthesized sample were characterized using X-ray diffraction (XRD), UV-vis diffuse reflectance spectra (UV-vis DRS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The SEM and TEM results confirmed that the uniform yolk-shell structure was formed during the solvothermal process. The band gap was about 1.41 eV, which have been confirmed by UV–vis DRS analysis. The photocatalytic property was evaluated by the photocatalytic degradation of methylene blue (MB) dye as a target pollutant under the visible-light irradiation. The experimental results confirmed the potential application of yolk-shell shape CuCo2S4 in visible-light photocatalytic applications.


2018 ◽  
Vol 31 (2) ◽  
pp. 230-237 ◽  
Author(s):  
Linyu Mei ◽  
Huiyu Chen ◽  
Yunpeng Shao ◽  
Junyuan Wang ◽  
Yaqing Liu

Composite nanofiber meshes of well-aligned polyacrylonitrile (PAN)/FeCo nanofibers containing nanoparticles (NPs) were successfully fabricated by a magnetic-field-assisted electrospinning technology, which was confirmed to be a favorable method for the preparation of aligned composite nanofibers in this article. Meanwhile, FeCo NPs, with a particle size of approximately 60 nm, were synthesized using a hydrothermal route. The nanocomposite fibers were prepared by an electrospun solution of PAN containing 0, 2, 4, and 6 wt% NPs. The as-spun nanofibers were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and vibrating sample magnetometer. Both the diameters and the degree of alignment of the composite nanofibers decreased with the increase in voltage and increased with the increase in FeCo content. The composite nanofibers exhibited superior ordered performance, with the highest alignment value being 97%. Due to the highly ordered alignment structures, the composite nanofiber meshes showed large anisotropic magnetic property. In particular, the saturation magnetization of the composite nanofiber films in the parallel and perpendicular directions of the fiber axis were 42 emu/g and 19.5 emu/g, respectively. Meanwhile, the remanence also exhibited distinction in different directions (parallel: 2.01 emu/g; perpendicular: 0.86 emu/g).


2011 ◽  
Vol 356-360 ◽  
pp. 558-564
Author(s):  
Xiao Wei Yuan ◽  
Xue Guo ◽  
Dan Dan Yang ◽  
Li Juan Wang ◽  
Mei Ling Cheng ◽  
...  

Hollow cubic TiO2particles were synthesized using cubic Cu2O particles as hard templates, and the hydrolysis of tetrabutyl titanate (TBOT). The products were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and UV-Vis spectrometer, respectively. The results show that the prepared TiO2is composed of anatase TiO2, and has a stronger absorption in the range of 300-400nm wavelengths in its UV-Vis spectroscopy. Experiments were carried out using a methyl orange solution as a model to evaluate the photocatalytic activity of hollow cubic TiO2particles. The effects of catalyst dosage, initial concentration and pH of methyl orange solution on the degree of photodegradation have been investigated. It’s found that the hollow cubic TiO2particles have a good photocatalytic property. And the degradation rate of the methyl orange, after methyl orange solution (5mg/L) containing hollow cubic TiO2particles (0.5g/L) is irradiated by 125W ultraviolet light for 120 minutes, is 95%.


2007 ◽  
Vol 121-123 ◽  
pp. 641-644 ◽  
Author(s):  
H.Y. Wang ◽  
Yi Yang Zhao ◽  
Z.Y. Li ◽  
Xiao Feng Lu ◽  
C. Wang ◽  
...  

Poly(vinyl alcohol) (PVA) nanofibers containing functional ZnS nanoparticles have been successfully prepared by electrospinning technique. The ZnS/PVA mixture solution for electrospinning was obtained by reacting Zn(Ac)2 with Na2S in the PVA aqueous solution. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD) analyses revealed that the morphology of the ZnS/PVA nanofibers consists of the dispersion of ZnS nanopaticles with cubic structure in PVA nanofibers. The coordinations between –OH and Zn2+ were characterized by infrared spectroscopy. The photoluminescence spectroscopy studies showed that the ZnS/PVA nanofibers had a strong blue-violet emission band at 450 nm, which may be associated with defect-related emission of the ZnS.


Sign in / Sign up

Export Citation Format

Share Document