Effect of Arc Length on Weld Appearance and Metal Transfer in Twin-Wire GMAW Process

2012 ◽  
Vol 472-475 ◽  
pp. 1279-1282 ◽  
Author(s):  
Huan Ming Chen ◽  
Shao Jie Wu

The experiments were performed with the twin-wire GMAW machine of Fronius product. The metal transfer process and the arc shapes were observed by use of shadowgraph technique with a high-speed camera. When the arc length increases during twin-wire CO2 arc welding, the mode of metal transfer changes from short-circuiting transfer to globular transfer, and to spray transfer. But it is difficult to form a stable spray transfer process, and the weld appearance becomes worse. The short-circuiting transfer in twin-wire CO2 arc welding can improve the process stability.

2013 ◽  
Vol 651 ◽  
pp. 333-337 ◽  
Author(s):  
Guo Hong Ma ◽  
Yu Ming Zhang

This paper designed a double-electrode GMAW(gas metal arc welding) system. This system includes main arc and bypass arc. Main arc (Base metal current: Ibm) is supplied with Constant Current power (CC mode) and bypass arc (bypass current: Ibp) is Constant Voltage power (CV mode). Main arc electrode used common carbon wire, bypass arc electrode used water cool copper. Welding experiment shows this DE-GMAW can change common metal transfer into spray transfer with lowest critical total current (Itotal) 200 amps. When Ibm decreases and bypass voltage increases, this critical current will increase and it is less than 230 amps when keeping spray transfer. High speed video proved that metal transfer is changed from spray transfer to globular transfer.


Author(s):  
Y Wu ◽  
R Kovacevic

Gas metal arc welding has been generally accepted as the preferred joining technique due to its advantages in high production and automated welding applications. Separate control of arc energy and arc force is an essential way to improve the welding quality and to obtain the projected metal transfer mode. One of the most effective methods for obtaining separate control is to exert an additional force on the metal transfer process. In this paper, the droplet transfer process with additional mechanical force is studied. The welding system is composed of an oscillating wire feeder. The images of molten metal droplets are captured by a high-speed digital camera, and both the macroscopic appearance and the cross-sectional profiles of the weld beads are analysed. It is shown that the droplet transfer process can be significantly improved by wire electrode oscillation, and a projected spray transfer mode can be established at much lower currents. By increasing the oscillation frequency, the droplet transfer rate increases while the droplet size decreases. In addition, the improvement in the droplet transfer process with wire oscillation leads to an enhancement of the surface quality and a modification of the geometry of the weld beads that could be of importance for overlay cladding and rapid prototyping based on deposition by welding.


2011 ◽  
Vol 189-193 ◽  
pp. 3395-3399 ◽  
Author(s):  
Ning Guo ◽  
Yan Fei Han ◽  
Chuan Bao Jia ◽  
Yong Peng Du

The metal transfer process with different welding parameters in rotating arc narrow gap horizontal welding is successfully observed by the high-speed photography system. The effects of wire rotating frequency on metal transfer process in rotating arc narrow gap horizontal welding are novelly explored. The metal transfer with different wire rotating frequency presents different modes. The results indicate that the droplet transfer has stable process with the rotating frequency of 5-20 Hz. And the weld formation is quite shapely. But with the high rotating frequency of 50 Hz, the metal transfer process is not acceptable and the weld formation is very pool. Metal transfer process is one of the most important factors of effecting the weld formation in rotating arc horizontal welding process besides the molten pool behavior and welding thermal circles.


2013 ◽  
Vol 718-720 ◽  
pp. 202-208 ◽  
Author(s):  
Mao Ai Chen ◽  
Yuan Ning Jiang ◽  
Chuan Song Wu

With high-speed welding inverter and precisely controlling the welding current with arc-bridge state, advanced pulse current waveforms can be produced to optimize the transfer characteristics of short circuiting transfer welding. In this paper, the images of droplet/wire, and the transient data of welding current and arc voltage were simultaneously recorded to study the influence of peak arcing current, background arcing current and tail-out time on the stability of short circuiting transfer process. It was found that maximum short circuiting transfer stability is reached under specific welding conditions. Any deviation from these conditions will cause abnormal rises in arc voltage indicating instantaneous arc extinguishing and greater spatter. Optimal welding conditions were obtained to achieve the maximum stability of short circuiting metal transfer process.


2007 ◽  
Vol 129 (6) ◽  
pp. 991-999 ◽  
Author(s):  
Kehai Li ◽  
YuMing Zhang

Gas metal arc welding (GMAW) is the most widely used process for metal joining because of its high productivity and good quality, but analysis shows that the fundamental characteristic restricts conventional GMAW from further increasing the welding productivity. A novel GMAW process, refereed to as double-electrode GMAW or DE-GMAW, thus has been developed to make it possible to increase the melting current while the base metal current can still be controlled at a desired level. This fundamental change provides an effective method to allow manufacturers to use high melting currents to achieve high melting speed and low base metal heat input. A series of experiments have been conducted to uncover the basic characteristics of this novel process. Results obtained from analyses of high-speed image sequences and recorded current signals suggest that DE-GMAW can lower the critical current for achieving the desired spray transfer, shift the droplet trajectory, reduce the diameter of the droplet, and increase the speed and (generation) rate of the droplets.


Author(s):  
Y M Zhang ◽  
E Liguo

Feedback control of droplet transfer is pursued as a solution to produce sound welds in gas metal arc welding. In previous work, a real-time visual system has been developed to monitor on line the droplet size and geometry. To realize feedback control of metal transfer, this study addresses the dynamic process of droplet growth and detachment. The droplet is subjected to gravitational force, electromagnetic force, plasma drag force and surface tension force. The geometry of the droplet is determined by these forces through the static force balance. However, the forces acting on the droplet continuously change as the melting electrode wire changes the droplet geometry. Because of this interdependence between the droplet geometry and the forces, the model must be solved dynamically and iteratively. A numerical program has been developed to acquire its dynamic numerical solution. Hence, the dynamics of the metal transfer process can be understood and simulated. Currently, this model is being used to simulate theclosed-loop controlled metal transfer process using different advanced control technologies.


2019 ◽  
Vol 33 (01n03) ◽  
pp. 1940040
Author(s):  
Yang Wang ◽  
Zhongyin Zhu ◽  
Guoqing Gou ◽  
Lin Peng ◽  
Yali Liu ◽  
...  

The cold metal transfer (CMT) with addition of pulses (CMT[Formula: see text]P) process is a new CMT welding method. This paper uses a high-speed camera and electrical signal synchronization acquisition system to perform a CMT[Formula: see text]P welding test on a 10 mm thick Q235 steel plate, and performs arc characteristic and droplet transfer behavior in the welding process. It has been founded that under relatively small currents and voltages, the CMT[Formula: see text]P transfer mode is a combination of a projected transfer mode with one droplet in the pulse period and a short circuit transfer mode during the CMT period. The process is stable with little spatter; at relatively large currents and voltages, the transition mode is the combination of pulse transfer, spray transfer and short circuit transfer. It results in one or more droplets that enter the pool both in pulse transfer in the spray transfer mode during the pulse period and in the short circuit transfer mode during the CMT period in a weld cycle.


2011 ◽  
Vol 271-273 ◽  
pp. 79-83 ◽  
Author(s):  
Yuan Mei Wen ◽  
Shi Sheng Huang ◽  
Gui Xiong Liu

The droplet transition of electrical arc welding is a complicated process that combines heat, mass and momentum transfer. A high-speed camera system with laser in the background is established to observe the fast changing process of molten droplet transition. A group of high-speed camera pictures which indicate the droplet gravity center is unstable in welding metal transfer process are taken and analyzed. The experimental results show that the electromagnetic force is the unstable root of the droplet gravity center.


2020 ◽  
Vol 143 (4) ◽  
Author(s):  
Kaiyuan Wu ◽  
Jiatong Zhan ◽  
Xuanwei Cao ◽  
Xiaobin Hong ◽  
Peimin Xie

Abstract The effects of pulse phase and pulse stage on the metal transfer characteristics in double-wire double pulse gas metal arc welding (DP-GMAW) of aluminum (Al) alloy were studied using high-speed camera images and current and voltage waveforms. In addition, the effects of various forces on dynamic metal transfer behavior were analyzed under different pulse phases and pulse stages. The results show that the spray transfer mode can be obtained in both the alternating pulse phase (APP) and synchronous pulse phase (SPP). The transfer pattern of the leading and trailing droplets is alternating in the APP, but changes to simultaneous metal transfer in the SPP, mainly owing to influence of the pulse phase on droplet growth. The transfer type is one drop double pulse (ODDP) during the strong pulse stage and one drop triple pulse (ODTP) during the weak pulse stage, regardless of the pulse phase. The pulse phase does, however, affect the Lorentz force between the leading and trailing droplets, causing droplet collision in the SPP, which results in a poorer weld bead appearance compared with in the APP. Finally, the droplet diameter was found to be similar during different pulse phases and pulse stages.


Sign in / Sign up

Export Citation Format

Share Document