Preparation of Visible Light Response K6SiW11O39SnII for Photocatalytic Degradation of Acid Brilliant Scarlet

2012 ◽  
Vol 476-478 ◽  
pp. 2005-2008
Author(s):  
Xiu Hua Zhu ◽  
Jia Huan Liu ◽  
Li Li Zhao ◽  
Peng Yuan Wang

Environmental friendly materials, K6SiW11O39SnⅡ(abbreviated as SiWSn), was synthesized, which is visible light response photocatalyst. The photocatalytic decomposition of Acid Brilliant Scarlet (abbreviated as ABS) aqueous solution with SiWSn was investigated using a broad spectrum of solar radiation. The results showed that the photocatalytic degradation efficiency of ABS with SiWSn was affected by the initial pH of ABS solution, the amount of SiWSn and the photolysis time. When the initial pH of ABS solution was 5, the initial concentration of that (20mL) was 3mg L-1, the concentration of SiWSn was 1.25g L-1, and it was irradiated 4h under the sunlight, the discoloration rate of which was 71.4%.

2005 ◽  
Vol 21 (08) ◽  
pp. 944-948 ◽  
Author(s):  
PENG Feng ◽  
◽  
CHEN Shui-hui ◽  
ZHANG Lei ◽  
WANG Hong-juan ◽  
...  

2017 ◽  
Vol 870 ◽  
pp. 418-423
Author(s):  
Chuya Ogawa ◽  
Kozo Taguchi

TiO2 has become a widely investigated photocatalyst because of its low cost, low toxicity and high photocatalytic activity under UV irradiation that causes photocatalytic decomposition of organic compounds. Impurities dopant and metal are often used to acquire impurities doped or metal doped TiO2 powder by a sol-gel method. In this paper, we made nitrogen doped TiO2 by a simple process. TiO2 (P25) thin films with 80 % of anatase and 20 % of rutile were fabricated on FTO glass by electrophoretic deposition (EPD). These were then doped with nitrogen by using urea and sintered in electric furnace at 500 and 600 degrees Celsius. EPD was superior for film formation at dispersibility. We calculated absorbance spectra of nitrogen doped TiO2 thin film fabricated on FTO glass. As the result, 600 degrees Celsius is superior sintering temperature at absorbance under visible light than 500 degrees Celsius. Moreover, when the samples sintered at 600 degrees Celsius, each additive amount had different increment of absorbance in specific visible light range. This result indicates the improvement in visible-light response on TiO2 by the simple process. To further research, it is essential to make nitrogen doped TiO2 under pressure and measure the photodegradation reaction.


2021 ◽  
Vol 21 (5) ◽  
pp. 3099-3106
Author(s):  
Yang Hsu ◽  
Joy Thomas ◽  
Chang Tang Chang ◽  
Chih Ming Ma

Norfloxacin (NF) is an emerging antibiotic contaminant due to its significant accumulation in the environment. Photocatalytic degradation is an effective method for removing emerging contaminant compounds in aqueous solution; however, it is not commonly applied because of the poor solubility of contaminant compounds in water. In this study, a photocatalytic degradation experiment was carried out on NF using a self-made ceria catalyst. At an initial concentration of NF of 2.5 mg L−1, the dosage of CeO2 was 0.1 g L−1 photocatalyst in water, and the initial pH of the NF solution was 8.0. With a reaction time of 180 min, the total removal rate of NF could reach 95%. Additionally, the studies on hydrogen production show that the maximum hydrogen production with 2% Fe–CeO2 can reach 25,670 μmol h−1 g−1 under close to 8 W of 365 nm, a methanol concentration of 20%, and a catalyst dose of 0.1 g L−1 photocatalyst in water. Furthermore, the intensities of photoluminescence (PL) emission peaks decreased with increased Fe-doped amounts on CeO2, suggesting that the irradiative recombination seemed to be weakened.


2020 ◽  
Vol 20 (3) ◽  
pp. 587
Author(s):  
Khoiriah Khoiriah ◽  
Diana Vanda Wellia ◽  
Jarnuzi Gunlazuardi ◽  
Safni Safni

Diazinon (C12H21N2O3PS) is an effective pest controller that has been frequently used by farmers in agriculture. It is a nonspecific and highly toxic pesticide having low persistence in the environment and categorized as moderately hazardous class II. The degradation of commercial diazinon in aqueous solution was investigated by photocatalysis using low-energy activated C,N-codoped TiO2 as catalyst under visible-light. The influence of some parameters, i.e., catalyst concentration, the initial concentration of diazinon, initial pH of diazinon, and irradiation time on the diazinon degradation was studied. The amount of diazinon degradation was strongly influenced by all the above parameters. The results show that titania-modified enhanced the degradation percentage of diazinon, from 44.08% without a catalyst to 86.93% by adding 12 mg C,N-codoped TiO2 catalyst after 30 minutes visible-light irradiation. UV-visible spectrophotometer, HPLC, and COD analysis verified that diazinon was successfully degraded under photocatalysis visible.


2014 ◽  
Vol 597 ◽  
pp. 129-135 ◽  
Author(s):  
Sinaporn Chala ◽  
Khatcharin Wetchakun ◽  
Sukon Phanichphant ◽  
Burapat Inceesungvorn ◽  
Natda Wetchakun

Sign in / Sign up

Export Citation Format

Share Document