Study and Application for Corrosion-Resistant Material Selection of Tubing and Casing in Sour Gas Reservoirs under Coexistence of H2S and CO2

2012 ◽  
Vol 485 ◽  
pp. 429-432
Author(s):  
Ling Feng Li ◽  
Xiao Ming Liu ◽  
Zhi Qiang Huang

For natural gas well with high content of CO2 and H2S, very serious corrosion in the gas well string is an important factor of gas production system life. In order to ensure the long-term development of gas wells, this paper mainly study the corrosion-resistant material selection of tubing and casing in sour gas reservoirs under coexistence of H2S and CO2 and proposes the optimization idea and technique of tubing and casing material selection. By taking Puguang gas field as an example, this paper optimizes the material selection of production casing for Puguang gas field. By testing, the optimal materials of gas well string in Puguang gas field have good performance of erosion resistance

2013 ◽  
Vol 690-693 ◽  
pp. 1516-1519
Author(s):  
Ling Feng Li

For natural gas well in sour gas reservoirs, very serious corrosion in the gas well string is an important factor of gas production system life. In order to ensure the long-term development of gas wells, this paper mainly introduces the tubing and casing corrosion in sour gas reservoirs, corrosion-resistant material selection of tubing and casing in sour gas reservoirs and proposes the optimization idea and technique of tubing material selection.. By taking W 63 well as an example, this paper optimizes the material selection of production casing for W 63 well. For application, the optimal materials of gas well string in W 63 well have good performance of corrosion resistance.


2013 ◽  
Vol 712-715 ◽  
pp. 1096-1099
Author(s):  
Ling Feng Li

For natural gas well in sour gas reservoirs, very serious corrosion in the completed well system is an important factor of gas production system life. In order to ensure the long-term development of gas wells, this paper mainly introduces material corrosion prevention technology in the completed well system, such as corrosion-resistant alloy steel corrosion control technology, bimetallic combination tubing, corrosion inhibitor technology and so on. By taking LJ Gas Field as an example, this paper introduces the material corrosion prevention technology in the completed well system in LJ Gas Field. For application in the completed well system in LJ Gas Field, the technology above have good performance of corrosion resistance.


2021 ◽  
Author(s):  
Bashirul Haq

Abstract Sour gas reservoirs are vital sources for natural gas production. Sulphur deposition in the reservoir reduces a considerable amount of gas production due to permeability reduction. Consequently, well health monitoring and early prediction of Sulphur deposition are crucial for effective gas production from a sour gas reservoir. Dynamic gas material balance analysis is a useful technique in calculating gas initially in place utilizing the flowing wellhead or bottom hole pressures and rates during the well's lifetime. The approach did not apply to monitor a producing gas's health well and detect Sulphur deposition. This work aims to (i) modify dynamic gas material balance equation by adding the Sulphur deposition term, (ii) build a model to predict and validate the issue utilizing the modified equation. A unique form of the flowing material balance is developed by including Sulphur residue term. The curve fitting tool and modified flowing gas material balance are applied to predict well-expected behaviour. The variation between expected and actual performance indicates the health issue of a well. Initial, individual components of the model are tested. Then the model is validated with the known values. The workflow is applied to active gas field and correctly detected the health issue. The novel workflow can accurately predict Sulphur evidence. Besides,the workflow can notify the production engineers to take corrective measures about the subject. Keywords: Sulfur deposition, Dynamic gas material balance analysis, Workflow


2021 ◽  
Author(s):  
Ming-Lei Yeow

Abstract A large gas field with carbonate formations was discovered about 200 km (kilometers) offshore, in water depths of 108 m (meters) below mean sea level. Flow analysis and reservoir depletion studies by the Operator show 7" tubing is required to provide high production rates of about 80 to 120 million Standard Cubic Feet per day (mmscfd) per well as the optimum production and depletion strategy for the field. The field presents significant challenges to well construction and completion. These challenges were considered in the design stage to optimise well completion design and operations. This paper describes the approach and methods used to overcome the challenges in the design and execution stage to optimise the completion design and to manage challenges during construction of the well including: –Due to loss of circulation in the fractured gas carbonate reservoirs, the well will be drilled with Pressurised Mud Cap Drilling (PMCD), a form of Managed Pressure Drilling (MPD). Thus, the design needs to provide for installing the well completion in this condition–The wells required heavy mud weight for drilling and thus, heavy brine weights for well completion. Challenges to avoid or minimise the loss of high cost heavy brine were considered–High reservoir temperatures of about 325 deg. F (degrees Fahrenheit) which lead to challenges of ensuring equipment will continue to work in high temperature environments, high loads / stresses on completion & casing during production, and Wellhead & Christmas Tree & Flowline movement / growth.–Presence of sour gas and CO2 (Carbon Dioxide) which require optimising metallurgy of tubulars and downhole equipment, considering corrosion and cost requirements–Understanding loads / stresses on the tubing and casings with high flowrates and high flowing temperatures–Concerns with formation collapse during production–Corrosion studies to optimise material selection and ensuring well integrity for at least twenty (20) years’ field life–Manage hydrates and scaling while carrying out well completion, well clean and well test operations and during the field life–Acceptable seals, barriers and completion equipment to manage high pressure gas–Wellhead and Christmas Tree that can take the high temperature and sour gas content–Well clean-up and testing after completion in conjunction with drilling operations–Cost and time optimisation to maximize returns on investment for the project. Well completion engineering studies were carried out for each challenge or consideration. Experiences and lessons from similar gas fields were also considered. Corrosion laboratory analysis was carried out to optimise the corrosion resistant alloy for the completion tubular and completion equipment. For each solution to the challenge, cost and time considerations were reviewed and studied to optimise the design, cost, integrity and safety of the wells and operations. This paper describes the approaches and methods taken by the Operator to optimise the Big Bore Gas Well Completion Design including some lessons for improvement after successfully drilling, completing, clean-up and testing of the first well with this completion design.


2013 ◽  
Vol 703 ◽  
pp. 135-138
Author(s):  
Ling Feng Li

For natural gas well, material selection of gas-well wellhead assembly is an important factor of gas production system life. In order to ensure the long-term development of gas wells, this paper mainly introduces the material selection of gas-well wellhead assembly, proposes the optimization idea and technique of gas-well wellhead assembly. By taking W well as an example, this paper optimizes the material selection of gas-well wellhead assembly for W well. For application, the optimal materials of gas-well wellhead assembly in W well have good performance of corrosion resistance.


2012 ◽  
Vol 450-451 ◽  
pp. 1536-1539
Author(s):  
Cui Ping Nie ◽  
Deng Sheng Ye

Abstract: Usually we pay more attention on how to improve gas well cementing quality in engineering design and field operations, and there are so many studies on cement agents but few researches on cement slurry injection technology. The field practice proved that conventional cementing technology can not ensure the cementing quality especially in gas well and some abnormal pressure wells. Most of the study is concentrated on cement agents and some cementing aspects such as wellbore condition, casing centralization etc. All the factors analysis on cementing quality has pointed out that a combination of good agents and suitable measurements can improve cementing quality effectively. The essential factor in cementing is to enhance the displacement efficiency, but normal hole condition and casing centralization are the fundamental for cementing only. Pulsing cementing is the technology that it can improve the displacement efficiency especially in reservoir well interval, also it can shorten the period from initial to ultimate setting time for cement slurry or improve thickening characteristics, and then to inhibit the potential gas or water channeling. Based on systematically research, aiming at improving in 7″ liner cementing, where there are multi gas reservoirs in long interval in SiChuan special gas field, well was completed with upper 7″ liner and down lower 5″ liner, poor cementing bonding before this time. So we stressed on the study of a downhole low frequency self-excited hydraulic oscillation pulsing cementing drillable device and its application, its successful field utilization proved that it is an innovative tool, and it can improve cementing quality obviously.


2014 ◽  
Vol 962-965 ◽  
pp. 636-641
Author(s):  
Tian Qing ◽  
Peng Cheng Liu ◽  
Zong Yao Qi

During the volcanic gas reservoirs development, stress-sensitivity will result in permeability decline with formation pressure drop, lowering gas production and affecting the whole gas reservoirs development program. On the basis of the stress-sensitivity experiments on volcanic rocks, the characteristic of stress-sensitivity in volcanic reservoirs is analyzed. On this basis, this paper studies the prediction method of gas well productivity in volcanic gas reservoirs with stress-sensitivity, and establishes the mathematical model of constant pressure production in volcanic gas reservoirs. The results show that the permeability of volcanic rocks has an exponential relationship with effective stress. The stronger the stress-sensitivity is, the more the gas well productivity losses under the same conditions. And the reservoir stress-sensitivity will increase the degree of gas well unsteady production decline.


Author(s):  
François Millet ◽  
Patrick Friez ◽  
Angelo Franzi ◽  
Bernard Bonnefois ◽  
Jean-Marc Lardon

More and more often, oil fields need to handle wet sour gases which contain high proportions of carbon dioxide and hydrogen sulphide. Furthermore, the liquid phase contains water with chlorides. Therefore, pitting corrosion and stress corrosion cracking may occur. Centrifugal compressors used on oil fields for increasing the pressure levels, require components which must be resistant to be efficient, but nevertheless cheap for an industrial solution. A corrosion resistant material with high mechanical characteristics is necessary. Duplex stainless steels which have been widely developed and experimented on off-shore applications, are a good way to achieve this challenge. They must be solution annealed to withstand severe corrosion conditions. This paper deals with the metallurgical aspects and the major influence of heat treatments, and with the manufacturing process of two major components : the casing and the rotor. This new centrifugal compressor, designed for a highly sour gas service, with 87% of acid compoaents, is dedicated to a process of sulphur elimination from the flare gas for environmental protection reasons. It has been operating since the beginning of 1995 by GASCO in Abu Dhabi.


2011 ◽  
Vol 201-203 ◽  
pp. 982-985
Author(s):  
Xiang Zhen Yan ◽  
Bing Shao ◽  
Xiu Juan Yang ◽  
Tong Tao Wang

Based on analysis of different guidelines and standards for material selection of casing which belong to six companies in four countries, the main factors that influence the material selection of casing have been generalized. Through comparing the safety and corrosion resistance properties of materials recommended by different guidelines in specific conditions, a synthetic guideline has been developed, which can provide a more appropriate suggestion. The environmental conditions and materials adopted in East Sichuan region have been taken for example. By comparing the proposed results with adopted materials of field well completion, it demonstrates that the result provided by the synthetic guideline is accurate and reliable.


Sign in / Sign up

Export Citation Format

Share Document