Bifurcation Characteristics of Unbalanced Rotor - Bearing System

2012 ◽  
Vol 490-495 ◽  
pp. 2037-2041
Author(s):  
Ling Xiang ◽  
Zi Rui Wang ◽  
Gui Ji Tang

Dynamic model of nonlinear rotor—bearing system is set up using the modified Capone bearing forces models. And the nonlinear dynamics behavior of unbalanced rotor—bearing systems was studied. The system state trajectories, Poincare maps, are also constructed to analyze the typical dynamic behavior of the system.Through the nonlinear dynamic numerical simulation of the system,the dynamic phenomena of the rotor—bearing system caused by oil film forces are clearly distinct. The computational results show that the rotor speed is one of the most important factors of the system dynamic behavior. It presents a periodic, period-doubling motion, quasi-periodic motion, and abundant nonlinear dynamical behavior with the changes of the speed.

2012 ◽  
Vol 460 ◽  
pp. 160-164 ◽  
Author(s):  
Song He Zhang ◽  
Yue Gang Luo ◽  
Bin Wu ◽  
Bang Chun Wen

The dynamic model of the three-span rotor-bearing system with rub-impact fault was set up. The influence to nonlinear dynamics behaviors of the rotor-bearing system that induced by rub-impact of one disc, two discs and three discs were numerically studied. The main influence of the rotor system response by the rub-impact faults are in the supercritical rotate speed. There are mutations of amplitudes in the responses of second and third spans in supercritical rotate speed when rub-impact with one disc, and there are chaotic windows in the response of first span, and jumping changes in second and third spans when rub-impact with two or three discs.


2007 ◽  
Vol 353-358 ◽  
pp. 2501-2504
Author(s):  
Yue Gang Luo ◽  
Song He Zhang ◽  
Xiao Dong Liu ◽  
Bang Chun Wen

A dynamic model was set up for the two-span rotor–bearing system with coupling faults of crack and rub-impact. Using the continuation-shooting algorithm for periodic solution of nonlinear non-autonomous system, the stability of the system periodic motion was studied by the Floquet theory. The unstable form of the rotor system with coupling faults is Hopf bifurcation when the depth of crack is smaller. The influence to the response of the system increased along with the depth of crack, the unstable form of the rotor system with coupling faults is period-doubling bifurcation. The conclusions provide theoretic basis reference for the failure diagnosis of the rotorbearing system.


Author(s):  
Shuai Yan ◽  
Bin Lin ◽  
Jixiong Fei ◽  
Pengfei Liu

Nonlinear damping suspension has gained attention owing to its excellent vibration isolation performance. In this paper, a cubic nonlinear viscous damping suspension was introduced to a rotor bearing system for vibration isolation between the bearing and environment. The nonlinear dynamic response of the rotor bearing system was investigated thoroughly. First, the nonlinear oil film force was solved based short bearing approximation and half Sommerfeld boundary condition. Then the motion equations of the system was built considering the cubic nonlinear viscous damping. A computational method was used to solve the equations of motion, and the bifurcation diagrams were used to display the motions. The influences of rotor-bearing system parameters were discussed from the results of numerical calculation, including the eccentricity, mass, stiffness, damping and lubricating oil viscosity. The results showed that: (1) medium eccentricity shows a wider stable speed range; (2) rotor damping has little effect to the stability of the system; (3) lower mass ratio produces a stable response; (4) medium suspension/journal stiffness ratio contributes to a wider stable speed range; (5) a higher viscosity shows a wider stable speed range than lower viscosity. From the above results, the rotor bearing system shows complex nonlinear dynamic behavior with nonlinear viscous damping. These results will be helpful to carrying out the optimal design of the rotor bearing system.


Author(s):  
Ting Nung Shiau ◽  
Jon Li Hwang

An efficient design algorithm for optimum weight design of a rotor bearing system with dynamic behavior constraints is investigated. The constraints include the restrictions on stresses, unbalance response, and/or critical speeds. The system dynamic behaviors are analyzed by the finite element method. And the exterior penalty function method is used as the optimization technique to minimize the system weight. The system design variables are the cross-sectional areas of the shaft and the stiffnesses of the bearings. The sensitivity analysis of the system parameters is also investigated. The example of a single spool rotor bearing system is employeed to demonstrate the merits of the design algorithm with different combination of dynamic behavior constraints. At the optimum stage, it is shown that the weight of rotor system can be significantly reduced. Moreover, the optimum design weights are quite difference for various combinations of dynamic behavior constraints.


2019 ◽  
Vol 2019 ◽  
pp. 1-20
Author(s):  
Youfeng Zhu ◽  
Zibo Wang ◽  
Qiang Wang ◽  
Xinhua Liu ◽  
Hongyu Zang ◽  
...  

A dynamic model of a double-disk rub-impact rotor-bearing system with rubbing fault is established. The dynamic differential equation of the system is solved by combining the numerical integration method with MATLAB. And the influence of rotor speed, disc eccentricity, and stator stiffness on the response of the rotor-bearing system is analyzed. In the rotor system, the time history diagram, the axis locus diagram, the phase diagram, and the Poincaré section diagram in different rotational speeds are drawn. The characteristics of the periodic motion, quasiperiodic motion, and chaotic motion of the system in a given speed range are described in detail. The ways of the system entering and leaving chaos are revealed. The transformation and evolution process of the periodic motion, quasiperiodic motion, and chaotic motion are also analyzed. It shows that the rotor system enters chaos by the way of the period-doubling bifurcation. With the increase of the eccentricity, the quasi-periodicity evolution is chaotic. The quasiperiodic motion evolves into the periodic three motion phenomenon. And the increase of the stator stiffness will reduce the chaotic motion period.


2010 ◽  
Vol 34-35 ◽  
pp. 467-471
Author(s):  
Li Cui ◽  
Jian Rong Zheng

Rigid rotor roller bearing system displays complicated nonlinear dynamic behavior due to nonlinear Hertzian force of bearing. Nonlinear bearing forces of roller bearing and dynamic equations of rotor bearing system are established. The bifurcation and stability of the periodic motion of the system in radial clearance-rotating speed and ellipticity-rotating speed parametric domains are studied by use of continuation-shooting algorithm for periodic solutions of nonlinear non-autonomous dynamics system. Results show that the parameters of rotor bearing system should be designed carefully in order to obtain period-1 motion.


Author(s):  
Yuegang Luo ◽  
Songhe Zhang ◽  
Feng Wen ◽  
Bangchun Wen

A dynamic model was set up for the two-span rotor-bearing system with coupling faults of crack and pedestal looseness supported on three plain journal bearings. The nonlinear dynamic behaviors that induced by crack, pedestal looseness and coupling faults are numerically studied. There is quasi-periodic motion appearing in the cracked rotor-bearing system, and it within the sub-critical speed range in the pedestal looseness rotor-bearing system. There is chaotic motion appearing within the supper-critical speed range in the pedestal looseness rotor-bearing system. The pedestal looseness fault is the main influence on the coupling faults system, and there is Period-3 motion appearing in the system. The results may bring up theoretical references for fault diagnoses, dynamic design, and security running to rotor-bearing system.


2010 ◽  
Vol 29-32 ◽  
pp. 2096-2101
Author(s):  
Yue Gang Luo ◽  
Song He Zhang ◽  
Bin Wu ◽  
Bang Chun Wen

The dynamic model of the pedestal looseness fault rotor-bearing system with slowly varying mass was set up. The complex characteristics of the rotor-bearing system were numerically studied. Along with the increase of the looseness mass, the chaotic motion area and amplitude range increase in the region of critical rotating speed; and P-3 motion area disappears in the region of twice-critical rotating speed, chaos is the main motion form. Along with the increase of the coefficient of mass slowly varying amplitude, the instable rotating speed increase, and the chaotic motion area decreases, P-n motion area increases in the region of critical rotating speed and twice-critical rotating speed. The conclusions may provide basis reference for fault diagnosis.


Sign in / Sign up

Export Citation Format

Share Document