The Design of the Wind-Light Complementary Street Lamp

2012 ◽  
Vol 490-495 ◽  
pp. 3738-3741
Author(s):  
Cheng Qun Li ◽  
Xuan Zhou ◽  
Xin Wang

This article describes the street lamp of the daily life ,which brings the long lines of the low voltage transmission and the high cost of the construction and so on. In view of these problems, the Wind-light Complementary Street Lamp is designed. According to the complementary street lamp system’s composition and working principle, and the analysis of wind power, solar energy power generation and the control strategy of battery charging, thus chooses the Single-chip microcomputer as the controller of it, as to fulfills the efficient and reasonable power generation goal.

2021 ◽  
pp. 0309524X2110606
Author(s):  
Mohamed Metwally Mahmoud ◽  
Mohamed M Aly ◽  
Hossam S Salama ◽  
Abdel-Moamen M Abdel-Rahim

In recent years, wind energy conversion systems (WECSs) have been growing rapidly. Due to various advantages, a permanent magnet synchronous generator (PMSG) is an appealing solution among different types of wind generators. As wind power penetration level in the grid increases, wind power impacts the grid and vice versa. The most essential concerns in the system are voltage sag and swell, and grid code compliance, particularly for low voltage ride-through (LVRT) and high voltage ride-through (HVRT) capability, is a pressing necessity. This paper presents a parallel capacitor (PC) control strategy to enhance the LVRT and HVRT capability of PMSG. Furthermore, this study presents a method for the sizing of a PC system for the reduction of the overvoltage of the DC-link during voltage sags and swell. Fast Fourier transform analysis is used to determine the total harmonic distortion (THD) for the injected current into the grid. The obtained results illustrate the effectiveness of the proposed system in keeping the DC-link voltage below the limit, power quality improvement, and increasing the LVRT and HVRT capability. Models of wind turbine, PMSG, and PC control system are built using MATLAB/SIMULINK software.


2019 ◽  
Vol 52 (3-4) ◽  
pp. 169-182 ◽  
Author(s):  
R Sitharthan ◽  
CK Sundarabalan ◽  
KR Devabalaji ◽  
T Yuvaraj ◽  
A Mohamed Imran

In this literature, a new automated control strategy has been developed to manage the power supply from the wind power generation system to the load. The main objective of this research work is to develop a fuzzy logic–based pitch angle control and to develop a static transfer switch to make power balance between the wind power generation system and the loads. The power management control system is a progression of logic expressions, designed based on generating power and load power requirement. The outcome of this work targets at an improved power production, active and reactive power compensation and ensures system load constraints. To validate the proposed control strategy, a detailed simulation study is carried out on a 9-MW wind farm simulation simulated in MATLAB/Simulink environment.


Author(s):  
Sarika D. Patil

Recently the wind power generation has attracted special interest and many wind power stations are being in service in the world. In the wind turbine that mostly uses induction generators, tend to drain large amounts of Vars from the grid, potentially causing low voltage and may be voltage stability problems for the utility owner, especially in the case of large load variation on distribution feeder. Voltage-source converter based various FACTS devices have been used for flexible power flow control, secure loading and damping of power system oscillations. Some of those are used also to improve transient and dynamic stability of the wind power generation (WPGS).


Sign in / Sign up

Export Citation Format

Share Document